Troubleshooting your airflow system

Learn a few tips to ensure production changes yield their full benefit.

01/03/2012


When a manufacturer makes a process change that delivers an increase in production, it may want to hold the applause until the system has run for 4 to 12 weeks. Process changes typically alter the airflow characteristics that were part of the system’s original design criteria—for example, the amount of process air, its temperature, its humidity, and the quantity of particulates and gases.

Changes in any of these characteristics can negatively impact the system’s performance, plant efficiency, and environmental permitting.

What’s the best course of action to avoid these risks and still reach your goal of increased production? Simply, use foresight by including people with the appropriate training and experience in the project planning stage. One should be an airflow expert who will understand how your proposed process changes will impact airflow and in turn how that will affect the air transport system. He or she will start by looking at the system’s original design criteria and operational parameters as well as the current parameters.

One or more of the following may be among the solutions for trouble-free results:

  • If the revised process is going to increase airflow beyond the capacity of the transport system or pollution control equipment, consider a change of fuel from natural gas combined with ambient air to natural gas and oxygen. This will remove the nitrogen from the combustion system, allowing the revised system to supply additional heat to the process, and may not require increasing the size of the pollution control system.
  • Modify the size of the ductwork to handle the increase or decrease in the air volume.
  • Increase the size of the pollution control equipment by adding another compartment to the bag house; change the material the bags are made out of or, if possible, increase the surface area of each bag to keep the air to cloth ratios the same; add volume to dropout boxes, or increase the number of cyclones.
  • Add another section or change the collection plate configuration of the electrostatic precipitator to increase its ability to efficiently remove particulate from the airstream.
  • Use more or less ambient air for cooling the airstream. If the system uses both ambient air and evaporative cooling, be sure the evaporative cooler can handle the additional heat load when the ambient air is reduced.
  • Have a good understanding of the chemistry of the airstream you are dealing with. Understand when materials in the airstream will be in a gaseous, liquid, and solid state. This information is valuable in determining when and where blockages and corrosion may occur in the transport system. History may tell you a buildup in the ductwork will occur where you have a cleanout door, but an increase or decrease in temperature or volume may move the area of the blockage out of the area of the cleanout door.

Joe Gosney’s full article on airflow as a factor in production management is one of the topics in Plant Engineering’s Forecast issue, which will be published in mid-February. To receive the digital edition of Plant Engineering in time for the Forecast issue, which also will feature the 2011 Plant Engineering Salary Survey, subscribe here (it's free!).



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Water use efficiency: Diminishing water quality, escalating costs; Lowering building energy use; Power for fire pumps
Building envelope and integration; Manufacturing industrial Q&A; NFPA 99; Testing fire systems
Labs and research facilities: Q&A with the experts; Water heating systems; Smart building integration; 40 Under 40 winners
Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.