Robots vs. jobs: Jobs win

Think Again: Smart applications of automation and robotics save and create jobs. Proposed Institutes for Manufacturing Innovation could advance manufacturing more quickly.

02/04/2013


ABB Robotics upper left, Rethink Robotics Dexter upper right, Yaskawa Motoman lower left, Universal Robots, lower right (photos courtesy of respective companies, except lower right by CFE Media)Robots are motion-controlled automation. Automation and robots create jobs. When automation and robotics are discussed and applied without appropriate communications, they make some plant-floor workers worry about continued employment. Truth is (and this isn’t necessarily intuitive when robots are first introduced to a site), automation saves manufacturing and other high-technology jobs. When automation is applied correctly, employees feel more valued and secure.

Overall, manufacturing strives for continued productivity gains. Plants can improve processes and apply automation to gain productivity. Or the least productive plants can refuse to improve and eventually go out of business, which increases the productivity average among those remaining. While both scenarios continue, applying automation is the better choice. At the co-located Automate 2013 and ProMat shows, success stories flowed.

Robots create jobs and help move workers to better, higher paying, fulfilling, and safer jobs, according to John Hayes, national accounts manager at Seegrid, manufacturer of driverless robotic industrial trucks.

“Qualified workers are difficult to find. Automation doesn’t take satisfaction away. Automation is empowering, by eliminating labor in some areas, taking some non-value-added activities out of the process,” Hayes said during the ProMat session, “Fact: Robots = Jobs.”

Macro-level statistics support the premise. Each 1% of manufacturing industry saved represents 1.45 million employees, added Jeff Burnstein, president, Robotic Industries Association. Germany is a robotic productivity poster child, having doubled robot use in recent years with an increase in manufacturing jobs and fewer lost during the downturn. “If we had more robots, we’d be losing fewer jobs,” Burnstein said.

The Roadmap for U.S. Robotics, the basis for the National Robotics Initiative, will provide details to Congress on that topic in March. The robots = jobs concept is cited in great detail in “Positive Impact of Industrial Robots on Employment,” a 2011 Metra Martech Ltd. study commissioned by the International Federation of Robotics (IFR). IFR stated, “Japan, Germany, and now Republic of Korea have invested more [in industrial robots], and have lost fewer jobs in manufacturing in the period covered by the study,” 2000-2008.

Henrik I. Christensen, Kuka Chair of Robotics at the College of Computing, Georgia Institute of Technology, and director of the Center for Robotics and Intelligent Machines, was a keynote presenter at the co-located ProMat 2013 and Automate 2013 events in

To lower costs and be more competitive, manufacturers often look at offshoring (not as economical as once thought) or using automation and robotics to keep assembly and other jobs here, said Henrik I. Christensen, Kuka Chair of Robotics at the College of Computing, Georgia Institute of Technology. Christensen, also the director of the Center for Robotics and Intelligent Machines, was a keynote presenter for the combined events. Since manufacturing creates 1.3 support jobs for each manufacturing job (more than any other sector), keeping manufacturing competitive with productive applications of automation and robotics will do us a world of good, he suggested.

Administration's National Science and Technology Council (NSTC) Jan. 16 report, based on input of nearly 900 stakeholders, describes an approach to implementing and managing a National Network for Manufacturing Innovation (NNMI), a proposed national network of up to 15 Institutes for Manufacturing Innovation (IMIs) around the country that would serve as regional hubs of innovation to boost U.S. competitiveness and strengthen state and local economies. The NNMI report, “Preliminary Design National Network for Manufacturing Innovation,” acknowledges:

“The U.S. manufacturing sector continues to be a mainstay of our economic productivity, generating $1.8 trillion in GDP in 2011 (12.2% of total U.S. GDP). Manufacturing firms lead the nation in exports: The $1.3 trillion of manufactured goods shipped abroad constituted 86% of all U.S. goods exported in 2011. Moreover, manufacturing has a larger multiplier effect than any other major economic activity—$1 spent in manufacturing generates $1.35 in additional economic activity. Manufacturing’s underpinning role also is corroborated in international studies. For example, according to the World Economic Forum, over 70 percent of the income variations of 128 nations are explained by differences in manufacturing product export.”

To help, NNMI suggested that preliminary IMIs, which sound a little like the successful Frauenhofer Institutes in Germany, should include:

  • Applied research, development, and demonstration projects that reduce the cost and risk of developing and implementing new technologies in advanced manufacturing
  • Education and training at all levels
  • Development of innovative methodologies and practices for increasing the capabilities and capacity for supply chain expansion and integration
  • Engagement with small- and medium-sized manufacturing enterprises, as well as large original equipment manufacturers (OEMs)
  • Access to shared facility infrastructure, with the goal of scaling up production from laboratory demonstrations and making technologies ready for manufacture. 

It’s good to see productivity proponents think again about the value of innovation, automation, and robotics for manufacturing.

Online extra This online posting contains more information above than the February print and digital edition and extra information below.

Christensen, at Georgia Tech, noted that robots can do in-process inspection to reduce waste and increase quality; increase volume, speed, and density in manufacturing, warehousing, and distribution centers; help with mass customization; and get products to customers more quickly. Laboratory automation increases the speed of discovery and lowers the cost of production of life-saving or life-changing medications. Robots also benefit composite manufacturing, hospital logistics, agile assembly applications, and package handling. New codes and technologies allow robots to operate in human spaces without traditional guards, and new easier-to-use robots are breaking the 25/25/50 rule, where 25% is the cost of the robot, 25% is auxiliary hardware, and 50% is software and programming, Christensen said.

Huge advances in robotic programming through ROS Industrial and OpenCV, an open source computer vision and machine learning software library, are making robots more accessible, Christensen said. “The average 20-year-old U.S. male has spent close to a year, on average, using first-person gaming software. Why do automation user interfaces look like they were designed by a 40-year-old engineer sitting in a lab somewhere?”

Mark T. Hoske is content manager, Control Engineering, CFE MediaHayes, from Seegrid, said American Packaging Corp., Columbus, Wis., implemented robotics with no reduction in labor, and increases in productivity, sales, job satisfaction (with an increased employee skill set), work environment safety, and wages. The company added 9% in manufacturing jobs as a result of its robotic investment.

- Mark T. Hoske, content manager, CFE Media, Control Engineering, mhoske(at)cfemedia.com.

Additional resources

- www.manufacturing.gov 

- www.ieee-ras.org/tase IEEE Robotics & Automation Society Transactions on Automation Science and Engineering

- www.ieee-ras.org/tro IEEE Robotics & Automation Society Transactions on Robotics

North American Robotics Market Sets New Records In 2012

See Control Engineering articles and videos on ROS Industrial, Universal Robots, Rethink Robotics (Baxter), ABB Robotic, Yaskawa Motoman, among others, below.



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Water use efficiency: Diminishing water quality, escalating costs; Lowering building energy use; Power for fire pumps
Building envelope and integration; Manufacturing industrial Q&A; NFPA 99; Testing fire systems
Labs and research facilities: Q&A with the experts; Water heating systems; Smart building integration; 40 Under 40 winners
Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.