New old process boosts solar, fuel cells

Chemical reactions on the surface of metal oxides, such as titanium dioxide and zinc oxide could give a boost for solar cells that convert the sun's energy to electricity.

06/26/2012


ISS SourceChemical reactions on the surface of metal oxides, such as titanium dioxide and zinc oxide could give a boost for solar cells that convert the sun’s energy to electricity.

A previously unappreciated aspect of those reactions could be key in developing more efficient energy systems, said scientists at the University of Washington (UW).

"These refined systems could include solar cells that would produce more electricity from the sun’s rays, or hydrogen fuel cells efficient enough for use in automobiles," said James Mayer, a UW chemistry professor.

“As we think about building a better energy future, we have to develop more efficient ways to convert chemical energy into electrical energy and vice versa,” said Mayer, the corresponding author of a paper about the discovery.

Chemical reactions that change the oxidation state of molecules on the surface of metal oxides historically have been a sole transfer of electrons. New research shows, at least in some reactions, the transfer process includes coupled electrons and protons.

“Research and manufacturing have grown up around models in which electrons moved but not atoms,” Mayer said.  “The research looks at a different model for certain kinds of processes, a perspective that could lead to new avenues of investigation. In principle this is a path toward more efficient energy utilization.”

Coupling the transfer of electrons with the transfer of protons could reduce the energy barriers to chemical reactions important in many technologies. For example, using solar energy to make fuels such as hydrogen requires that electrons and protons couple.

The new perspective also could be important for photocatalytic chemical processes, including those designed for wastewater remediation or to create self-cleaning surfaces, such as the outside of buildings in areas with heavy industrial air pollution.

The research focused specifically on nanoparticles, measured in billionths of a meter, of titanium dioxide and zinc oxide. Titanium dioxide is the most common white pigment, used in paints, coatings, plastics, sunscreen and other materials. Zinc oxide also is in pigments, coatings and sunscreens, as well as white athletic tape, and is also in the rubber, concrete and other materials. Nanocrystals closely examine chemical processes at the material’s surface.

Mayer said the goal of the work is to get those working in various technological areas involving metal oxides to think in different ways about how those technologies work and how to make them more efficient.

The work also could prove important in finding more efficient ways to fuel vehicles of the future, he said. Fuel cells transform atmospheric oxygen into water by adding electrons and protons. Coupling those added electrons and protons could make fuel cells more efficient and allow replacement of costly materials such as platinum.

“Chemical fuels are very useful, and they’re not going away,” Mayer said. “But how do we utilize them better in a non-fossil-fuel world?”



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2014 Product of the Year finalists: Vote now; Boiler systems; Indirect cooling; Integrating lighting, HVAC
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.