Mechatronics: PLM, Mechatronics

Product lifecycle management enables the mechatronic design philosophy.

12/07/2010


Mechatronics is a design philosophy that emphasizes multidisciplinary, model-based communication, collaboration and integration from the start. Sustainability has further challenged mechatronics to transform itself into a closed-loop, cradle-to-cradle design approach. Product lifecycle management (PLM) is a process of managing the entire engineering lifecycle of a product, along with the software tools to synchronize information. Just as in mechatronics, this lifecycle is now viewed as one that stretches from conception, through design and manufacture, to service, disposal and recycling. Just as a key element in mechatronics is human-centered design, PLM is becoming more human-centered, in addition to being information-centered.

Recently, I was invited to talk about Mechatronics and Innovation at the Product Lifecycle Management 2010 Conference in Detroit. PLM is certainly not new, having been introduced 25 years ago, but it was my first real exposure to the world of PLM and major companies from many industries were there. With the need to manage increasingly complex designs, along with the imperatives for energy-efficient, sustainable and environmentally responsible design, PLM is clearly a subject of great interest worldwide.

So how are Mechatronics and PLM related? Does PLM take over when the Mechatronics effort ends or are they becoming integrated so that both are enhanced? To better understand the world of PLM today and in the future, I spent considerable time with John Bayless, the director of strategy and program management for Mercury Marine and the practice director for Mercury Marine PLM Services, a product lifecycle management consulting business within Mercury Marine. Bayless is an Annapolis graduate who served as a U.S. Navy fighter pilot. He holds an MBA from the University of Michigan’s Ross School of Business.

In Bayless’ view, the link between a mechatronics approach and PLM is the need for collaboration during the product development process. A mechatronics approach calls for a cross-functional team to come together in a way that encourages specialists to make mutual design adjustments such that the final design is optimized. Execution of a mechatronics approach creates a need for PLM.

Part of the mechatronics need for PLM stems from the difficulty specialists, often in disparate locations, have coming together with the latest design information early and often enough to collaborate. A PLM system makes collaboration easier by connecting engineers and cross-functional team members (such as manufacturing, procurement, marketing, etc.) almost in real time. For example, by creating one database which serves as the “single source of truth,” PLM reduces re-work caused by confusion over erstwhile data from multiple databases. When used to the fullest, PLM saves time—time put to better use creating innovations for new products.

From my discussion with Bayless, I learned the scope of PLM implementation varies by company. For example, some Mercury PLM Services clients are considering their first investment in PLM and are looking for reliable information. Other clients use PLM only to store CAD data but are interested in deploying the tools in more value-added ways across the enterprise. Mercury PLM Services provides best practices which bring PLM benefits to the full organization, not just one discipline, which makes it ideal for mechatronics.

Communication, collaboration and integration are the key attributes of the mechatronics design process that lead to innovation. PLM—managing all the information from the start of the design process to the eventual disassembling and recycling of the product—can facilitate that process. But the mechatronic design process must first be defined for the organization and widely embraced. Ownership of the process, not just a consensus, by each individual is essential to reap the full benefits of PLM.

Kevin C. Craig, Ph.D., Robert C. Greenheck Chair in Engineering Design and Professor of Mechanical Engineering, College of Engineering, Marquette University.

This appeared in December editions of Plant Engineering and Control Engineering, in cooperation with Design Newswww.designnews.com.

Visit the Mechatronics Zone for the latest mechatronics news, trends, technologies and applications at www.designnews.com/hottopic/The_Mechatronics_Zone/index.php



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Smoke control: Designing for proper ventilation; Smart Grid Standard 201P; Commissioning HVAC systems; Boilers and boiler systems
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.