Is smaller better for nuclear power plants?

Nuclear power plants 1/10 the size of current utility-scale plants may become reality some years from now. Faster construction, modular design, and easier financing are behind their development

08/30/2010


Small nuclear power plants are not new. After all, the pioneer commercial reactors were small units, along with generations of nuclear reactors successfully applied in naval vessels. Conditions may now be favorable to build advanced nuclear power plants with one-tenth the output power of current utility-scale plants—and even physically smaller in overall size.

During my direct involvement in nuclear power plant design and development more than 30 years ago, those of us advocating smaller-scale plants were not popular with management or fully in-synch with prevailing market conditions. At that time, only large plant construction was on the radar screen of economics. Financing of capital projects also lived in a different world. Now, nuclear plant design with “smaller is better” in mind may have a chance to become reality. Benefits of small nuclear reactors are seen as:

  • Faster plant construction with smaller, less complex reactor systems;
  • Modular plant design, enabling simpler replication of multiple units;
  • Real scalability of plant output to current power needs, and easier add-on of  units as demand increases;
  • Simpler design, such as integrated reactor core and steam generator, less complex shutdown procedures; and
  • Easier financing with less total cost involved.

Nuclear power has its share of opponents, extending to any new developments. In their view, downside of smaller plant design includes:

  • Nuclear material and spent fuel dispersed to more sites;
  • Safety: more potential terrorist targets (and possible plant sitings near urban areas); and
  • Concern about overall cost of electricity generation.

These issues require proper resolution and assurance of being preventable to the most practicable degree. An emotional decision should not be the basis to turn away from a promising technology.

Numerous designs, developers

A significant number of companies worldwide are developing small nuclear plants of new, advanced design with intent to commercialize them.

One U.S. developer—Babcock & Wilcox Nuclear Energy Inc.—refers to its technology as the “world’s first advanced generation III” small modular reactor (SMR) nuclear plant and carries the catchy trademark name of “mPower.” To streamline production and lower project costs, the pressurized water reactor (PWR) rated for 125 megawatt electric (MWe) output would be factory built and transported to the plant site via barge or rail.

mPower’s design calls for burying the reactor and its containment dome below ground. Its spent fuel is to be stored onsite under water for the full 60-year design life of the reactor. Babcock & Wilcox (B&W) envisions initial SMR sitings at existing nuclear plant sites with space for future expansion and where obtaining a permit would be simpler. B&W intends to request certification of mPower from the Nuclear Regulatory Commission (NRC) in 2011 and projects first units going online after 2018.

Among other current small reactor designs are NuScale Power Inc.’s 45 MWe modules, 12 of which would be integrated to form a standard plant, and IRIS, a 100-335 MWe system from a group of companies led by Westinghouse (a unit of Toshiba Corp.). Both offerings are PWR designs.

NRC’s current licensing agenda focuses on new large-scale nuclear reactors—thus pending applications for “mini” nuclear plants will be considered later. However, with their shorter construction period, downsized nuclear power plants could be operating in about the same time frame as their new giant cousins.

For more on small nuclear plant designs, visit

www.world-nuclear.org/info/inf33.html;

www.babcock.com/products/modular_nuclear/;

www.nuscalepower.com; and

www.westinghousenuclear.com.

Frank J. Bartos, P.E., is a Control Engineering consulting editor. Reach him at braunbart@sbcglobal.net.

Also read, from Control Engineering:

Advancing Technology: 'American Idle' - Nuclear Power



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2014 Product of the Year finalists: Vote now; Boiler systems; Indirect cooling; Integrating lighting, HVAC
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.