Alabama Robotics Technology Park to Educate in Emerging Robotics, Automation Technologies

Three-phase project will provide in-depth training on all aspects of robotics, including safety, with safety solutions provided by Omron STI.

01/21/2011


Omron Scientific Technologies, Inc. has partnered with the Alabama Robotics Technology Park (RTP), and is serving as the primary robotics safety provider for the project. The RTP is a three-phase project that will consist of individual training facilities targeted to a specific industry need, which will provide college level courses on every aspect of robotics training, including robotics safety. Alabama Robotics Tech Park

“The vision of Alabama Governor Bob Riley, the RTP is a collaborative effort between the state of Alabama, Calhoun Community College, AIDT, which is Alabama’s workforce training agency, and robotics industry leaders across the nation,” says Ed Castile, AIDT Executive Director. “The mission of the RTP is to provide a technically trained, highly-skilled, and educated workforce for current and future automation and robotics technologies, to assist public and private entities in developing new robotics systems and technologies, and to promote the growth and expansion of companies through new robotics technologies.”

Completed in September 2010, Phase I of the project feature the 52,000 square foot Robotic Maintenance Training Center, which houses the industry training program where technicians are trained to work on robotic machinery.

Phase II of the project will be the 30,000 square foot, Advanced Technology Research and Development Center; which will feature a test facility for companies currently in the robotics manufacturing industry. The facility will be used by NASA and the U.S. Army Missile Command for the purpose of research, development and testing of leading edge robotics used for military projects and space exploration. Phase II is scheduled to open spring of 2011.

Alabama Robotics Tech ParkPhase III will be the Integration and Entrepreneurial Center - a collaborative consolidation of technology involving higher education and industry. This facility will allow companies to build and adapt robots for new industries. Start-up plants will be able to set up manufacturing lines to integrate software and equipment, test systems and train maintenance and production staff.

For Phase I of the project, Omron STI delivered the complete safety solution for three of RTP’s robotic weld cells, eight single-robot work cells, and a robotic assembly line which included seven robots, a conveyor system, and an automatic guided vehicle (AGV).

“Each robot in the facility underwent a conceptual machine safeguarding assessment performed by Omron STI, and is compliant with all of the latest industry consensus safety standards, including ANSI/RIA R15.06, NFPA 79, ANSI B11.19, ANSI B11.20, and ANSI B20.1, among others,” says Chris Soranno, Safety Compliance Manager, Omron STI.

The three robotic weld cells are guarded with two safety mats, one MS4800 safety light curtain, one TL4019 safety interlock switch with rear release functionality and a slide bolt, one A4EG enabling switch device, one emergency stop pushbutton, and a complete perimeter barrier guard system.

The eight single-robot work cells are guarded with two OS3101 laser light safety scanners, one MS4800 safety light curtain, one TL4019 safety interlock switch with rear release functionality and a slide bolt, one A4EG enabling switch device, one emergency stop pushbutton, and a complete perimeter barrier guard system. Alabama Robotics Tech Park

All of the weld cells and single-robot work cells incorporate perimeter barrier guard systems to define the safeguarded space of each workspace. One of the four sides of each cell is a waist-high fence with one MS4800 safety light curtain providing protection at the top to provide the level of safety required, while still enabling students to see into the cell clearly.

The robotic assembly line includes seven robots guarded with six MS4800 safety light curtains, two OS3101 laser light safety scanners, seven interlocked access doors (each with a TL4019 safety interlock switch with rear release functionality, an emergency stop pushbutton and a request access pushbutton), one PA4600 perimeter access guard, and a complete perimeter barrier guard system enclosing three sides.

Each cell also incorporates an NE1A programmable safety controller (with additional slave nodes on the assembly line) that networks everything together, enabling students to view the status of the safety system of each cell from the classroom, a stack light for indication of live voltage, and an Omron touch screen for visual feedback and status monitoring.

www.sti.com

Omron Scientific Technologies Inc



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Smoke control: Designing for proper ventilation; Smart Grid Standard 201P; Commissioning HVAC systems; Boilers and boiler systems
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
Cannon Design’s blog is a place for the many voices of the firm to share thoughts and news related to current projects...
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.