Insights on power

An overview on how the electric grid is changing to increase safety for everyone and the current challenges engineers face.

03/11/2013


Today’s electrical grid is undergoing changes to help ensure blackouts, cyber attacks, and other problems don’t occur. Here is a brief summary of the blogs that can be found at the “Insights on Power” blog at www.csemag.com/blogs/.

In “Stopping Industrial Hackers: Cyber Security For IEDs,” we noted the efficacy of turning to the IEEE Power and Energy Society's Substations Committee’s work on IEEE 1686, “Standard for Substation Intelligent Electronic Devices (IED) Cyber Security Capabilities.”

In “For Communications Interop, Follow Protocols” I recommended perusal of IEEE Standard 1815, which is also known as the Distributed Network Protocol, or DNP3, described in this press release. Here’s a link to the DNP User’s Group.

In “Industrials and the Utility: Standards for Interconnection Save Money,” I described how IEEE 1547, “Standard for Interconnecting Distributed Resources with Electric Power Systems,” can identify functionalities needed in control systems.

The European Network of Transmission System Operators for Electricity (ENTSOE) has issued a paper calling for IEC 61850 stakeholders (including IEC’s Working Group 10 and TC57) to address the issues it has identified.

Assessing the Interface: Industrial Customers and the Utility” examined the limitations of relying on interval meters as the gateway. An alternative approach uses the meter solely to record usage; a separate appliance or gateway is used for bidirectional communications.

In “'Big Data’ and the Need for Improved Time Synchronization Standards,” I discussed the power industry’s recognition that a greater degree of accuracy for reference time synchronization, one that can be distributed over an Ethernet network, is needed.

Two standards are important here: IEEE Standard 1588, a precision time protocol that has become an international standard, and IEEE Standard C37.238. The latter defines the precision time protocol of IEEE Standard 1588 in power system protection, control, and automation. IEEE Standard C37.238 addresses the specific needs of electric utilities.

The blog, “Selecting a Protection and Control Automation System,” pointed to pitfalls in the selection of vendors and systems for protection and control automation systems for industrial clients and offered a few guidelines. While I suggested that a single protection/substation equipment vendor may offer multiple automation/integration options, including a PLC protocol-based option, IEEE Standard 1815, IEC 61850, or even a proprietary option, the issue is complex. (As noted, IEC 61850 has encountered implementation issues.)

Designing a Time Synchronization Source” notes that different time sources and distribution methods are available, depending on the degree of accuracy needed in the system. This blog is followed by “Assessing Vendor Claims on Time Resolution in IEDs,” which warns that absolute accuracy of events and channels between multiple IEDs is a challenge.

In “Addressing Time Synchronization Issues, Related Standards Work,” I discuss how to finesse the issues of system design and the selection of devices in the market. A vendor statement on absolute time accuracy would help. Fortunately, a standard on time-tagging in protection and disturbance IEDs is in the works.

Substation Physical Security Back on the Front Burner” explored the link between “phy-sec” and “cyber-sec.” (No more “security through obscurity,” folks.)

In “Political and Regulatory Patchwork Governs Interconnection Policies,” I discuss the myriad non-engineering subtleties that can affect your work.

Accommodating Bi-Directional Power Flow in Substation Design” addressed the utility’s need for situational awareness of how your client’s bi-directional flow affects its grid.

In “Substation Automation and Automation of the Control House,” I parsed the trend away from hardwired control panels in favor of soft controls and controls built into intelligent electronic devices (IEDs).

Designing Substations and Transformers for Bi-Directional Power Flow” and the same title, “Part II,” were devoted to my remarks on a webcast titled “Smart Grid and Transformers.”

In “Ethernet Network Design Issues in the Substation” (Ethernet is a suite based on IEEE standard 802.3), I discussed functional and environmental factors required by such a design.

In the final blog of 2012, I looked forward in “DC Power and Renewable Resources.” If there’s one nascent technology you need to keep an eye on, it’s dc power’s efficiencies, which contribute to parity among renewables.


Sam Sciacca is an active senior member in the IEEE and the International Electrotechnical Commission (IEC) in the area of utility automation. He has more than 25 years of experience in the domestic and international electrical utility industries. Sciacca serves as the chair of two IEEE working groups that focus on cyber security for electric utilities: the Substations Working Group C1 (P1686) and the Power System Relay Committee Working Group H13 (PC37.240). Sciacca also is president of SCS Consulting.



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2014 Product of the Year finalists: Vote now; Boiler systems; Indirect cooling; Integrating lighting, HVAC
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.