Case study: Schools’ air conditioning

Scenarios are studied to ensure thermal comfort criteria in classrooms.

09/29/2016


Figure 4: This graph illustrates the outside air temperature and the number of hours within a defined temperature range. Courtesy: DLR Group

Many schools don't have air conditioning in the Pacific Northwest; however, the trend has been changing due to increasing temperatures. In a typical school year, these higher temperatures are mostly experienced during 2 weeks in June and 2 weeks in September.

The design criteria of 75°F may not have been achievable year-round for an elementary school project in Everett, Wash., without active cooling, but the need for cooling was reduced by means of good passive design, optimum glazing percentage, external shading, and high-performance glazing. For this reason, it was necessary to quantify set thermal comfort criteria to be met, rather than a typical peak design setpoint. This discussion was an important one to have and understand for the owner, as it could lead to the complete elimination of cooling equipment, reduced ductwork in the space, reduced first cost, and the potential to decrease future maintenance and utility costs.

Figure 5: The graph illustrates the peak design airflow capacity at 100%, 70%, and 50%. Courtesy: DLR Group

The conversation, in this case, was initiated by discussing the raw weather data without the complexities of internal loads, exterior-envelope specifications, and free-cooling potential by means of an air-side economizer or operable windows.

Figure 4 shows the occupied hours per year, within each temperature range, per the outside air conditions for the city of Everett. Operable windows were used when the outdoor temperature was below 70°F; cooling was achieved via a displacement ventilation system. All of the months are included due to summer school. The building owner also was also interested in using operable windows, for which a green-light system was put in place to indicate to the user when it is "good" to open the window (based on outside air (OA) conditions when 60°F<OA<75°F). When windows are open, the variable air volume (VAV) box is closed off, unless called by the carbon dioxide sensor. Minimum ventilation is provided mechanically unless windows are open.

Figure 6: This graph illustrates the annual airflow requirements for 100% capacity. It is indicative of the hours when full capacity is required, when 70% meets the load, and what reducing to 50% capacity means. Courtesy: DLR Group

Design day performance was analyzed for the three scenarios with 100% capacity, 70% capacity, and 50% capacity of peak airflow. Figure 5 shows the peak design day airflow capacity at 100%, 70%, and 50%. Figure 6 shows the annual airflow requirements for 100% capacity. This graph is indicative of the hours when full capacity is required, when 70% of the capacity meets the load, and what reducing to 50% capacity means.

Figure 7: This graph illustrates the hours inside of the different classrooms in a pod without any active cooling. Courtesy: DLR Group

The classrooms were modeled with controls where windows would open at 60°F<OA<75°F. The model was simulated to quantify the anticipated hours above the prescribed thermal comfort of 75°F, with and without a ceiling fan in operation. A no-cooling option showed the hours if no active cooling was provided year-round and windows were closed. These hours were not acceptable by the client, thus cooling was included and studied with reduced capacity. Figure 7 shows the hours inside the different classrooms in a pod without any active cooling (worst-case scenario).

Figure 8: This graph illustrates hours above 75°F with operable windows used when outside air conditions can maintain a comfortable space temperature, with cooling capacity or airflow at 70%. Courtesy: DLR Group

Figure 8 shows hours above 75°F with operable windows used when outside air conditions can maintain a comfortable space temperature, with cooling capacity or airflow at 70% of peak capacity. Figure 9 illustrates this with cooling capacity or airflow at 50% of peak capacity.

Figure 9: This graph illustrates hours above 75°F with operable windows used when outside air conditions can maintain a comfortable space temperature, with cooling capacity or airflow at 50%. Courtesy: DLR Group

The 70% capacity was incorporated into the design to allow for some reduction in supply airflow sizing, which had a trickle-down effect on the plant sizing. This school was designed with a central ground-source heat pump system, all within the budget of the project.

The building envelope included strategic exterior shading, optimized operable-window area, and contacts in operable windows to shut off the HVAC system when open. All scenarios were studied, with and without operable windows, to ensure the space would meet the thermal comfort criteria if windows had to remain closed due to acoustical reasons.

 


Amarpreet Sethi is a senior associate at DLR Group's Seattle office. Her expertise is in building optimization and energy services. She was also a Consulting-Specifying Engineer 40 Under 40 winner in 2014.



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Combined heat and power; Assessing replacement of electrical systems; Energy codes and lighting; Salary Survey; Fan efficiency
Commissioning lighting control systems; 2016 Commissioning Giants; Design high-efficiency hot water systems for hospitals; Evaluating condensation and condensate
Solving HVAC challenges; Thermal comfort criteria; Liquid-immersion cooling; Specifying VRF systems; 2016 Product of the Year winners
Driving motor efficiency; Preventing Arc Flash in mission critical facilities; Integrating alternative power and existing electrical systems
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
Designing generator systems; Using online commissioning tools; Selective coordination best practices
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
click me