Motor designs focus on energy efficiency

Of the total cost of ownership of an electric motor in an industrial or commercial application, approximately 2% is the amount paid to purchase the motor. The remaining 98% is the cost of powering the motor over its lifetime.


Of the total cost of ownership of an electric motor in an industrial or commercial application, approximately 2% is the amount paid to purchase the motor. The remaining 98% is the cost of powering the motor over its lifetime. Hence, the energy efficiency of the motor weighs heavily in the purchase decision, with motor designers and manufacturers focused on delivering increased efficiency in the most economical means possible.

Fewer losses with materials

Traditional ways to improve motor efficiency include using better materials or using more materials. Better materials include higher quality steel with lower core loss or thinner laminations for motor construction. Both of these approaches, however, involve higher motor manufacturing costs. Another approach is to use more steel, thereby lowering flux density and losses and allowing room for more winding material, which in turn reduces the resistance and conduction losses. Adding materials, of course, increases the cost of the motor.

Beyond system design considerations, motor manufacturers are looking at motor designs for additional efficiency gains beyond NEMA Premium motors; the graph shows the efficiency difference in fan application. Courtesy: NovaTorque

Several more innovative approaches to improving efficiency are currently being attempted in the industry. For induction motors, the most notable change is the move from cast aluminum rotors to cast copper rotors. This can raise efficiency by about 1% at three horsepower (3 hp). However, the cost of cast copper rotors is a significant factor.

Variable speeds

Another approach is to use an electronic drive to operate motor systems at variable speeds. For many applications, this has the greatest energy savings potential. In some systems, this can save 50% or more of the total energy that would be consumed by a fixed-speed system without an electronic drive. The cost of adding the electronic drive to achieve variable speed can quickly be recouped with the savings from reduced energy consumption.

NovaTorque Premium Plus+ motors offer higher efficiency and smaller size at a price competitive to current NEMA Premium induction motors, the company said. Courtesy: NovaTorque

An emerging trend in product design is to change from induction motors to using permanent magnet motors with electronic drives, even in some fixed-speed applications. This is because permanent magnet motors can have higher efficiency and smaller size for the same output power. This saves on energy costs and can reduce overall product size and weight. Slowing this trend have been the recent dramatic increase in the price of rare earth magnet material and the increasing uncertainty of its supply.

Design example

A new motor category introduced by NovaTorque Inc. takes advantage of inherent energy efficiency of a permanent magnet motor, but without the increased costs associated with rare earth magnets. This design is an axial interior permanent magnet motor. A conical rotor and stator geometry concentrate magnetic flux in the field poles, allowing the use of low-cost, readily available, ferrite magnets, with performance and efficiencies equivalent to or better than conventional rare-earth-based motors. In variable-speed, variable-torque applications, such as fans or pumps, energy savings can exceed 10% when compared to NEMA Premium efficiency ac induction motors.

- Alan Crapo is vice president–engineering, NovaTorque Inc. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering. 

Advanced motor design: New Motors Reach New Applications 

Motors deliver more efficiency than NEMA Premium[tt_news]=40937

Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
How to use IPD; 2017 Commissioning Giants; CFDs and harmonic mitigation; Eight steps to determine plumbing system requirements
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Power system design for high-performance buildings; mitigating arc flash hazards
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me