How climate science affects building design

New York City’s Urban Green Council concluded that NYC could reduce its carbon footprint 90% by 2050 by focusing primarily on the building sector.

05/22/2015


Climate science tells us we must reduce carbon pollution dramatically—often citing an 80% worldwide reduction by 2050—to ensure an environment in which humans can live in security and prosperity. Many scientific organizations conclude that preventing catastrophic, irreversible outcomes requires keeping total global average warming no more than 3.5 F compared to pre-industrial levels, about 2 F above current levels.

To prevent temperatures rising above such dangerous levels, atmospheric concentrations of carbon dioxide (CO2) would need to peak below the 400 to 450 ppm range and stabilize in the long term at around today's level, which is about 395 ppm and increasing by about 2 ppm per year. A steady CO2 concentration at about or below 450 ppm by 2050 would require global emissions to decline about 60% by 2050. This suggests that in industrialized countries, including the United States, greenhouse gas emissions would have to decline by about 80% by 2050.

In February 2013, the Urban Green Council (the U.S. Green Building Council's New York City [NYC] chapter) published 90 by 50, which concluded that NYC could reduce its carbon footprint 90% by 2050 by focusing primarily on the building sector, which is the source of 75% of NYC's greenhouse gas emissions.

To achieve this target, emission reductions of between 90% and 100% for new construction buildings are necessary.

 


Umit Sirt is a partner and senior engineer at Taitem Engineering where he manages the energy consulting services department, providing services relating to building and industrial energy efficiency including benchmarking, general feasibility studies, advanced energy models, and investment-grade energy audits; net-zero design and consulting; and technical reviews, energy master planning, and outreach.



Product of the Year
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
40 Under Forty: Get Recognized
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
MEP Giants Program
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
July 2018
Integrating electrical and HVAC systems, emerging trends in fire, life safety, ASHRAE 90.4
June 2018
Chilled-water system design, NFPA 99, Grounded power supply systems
May 2018
40 Under 40 winners, fire and life safety, performance-based designs, and more
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Data Center Design
Data centers, data closets, edge and cloud computing, co-location facilities, and similar topics are among the fastest-changing in the industry.
click me