Examining higher educationfacilities: HVAC and plumbing

As technology advances in every field, the college and university students being prepped for future careers in those fields need the tech they’re learning with to keep up. That presents unique challenges for the engineers working on such structures—specifying advanced systems that satisfy the unique needs of each institution. Here, professionals with experience in the area offer advice on how to tackle such facilities and receivetop marksin regard to HVAC and plumbing.

10/26/2018


Examining higher education facilitiesRespondents

John Holbert, PE, LEED AP, Senior Principal/Client Executive, IMEG Corp., Rock Island, Ill.

Donald Horkey, PE, LEED AP, Principal, DLR Group, Minneapolis

Kent Locke, PE, NCEES, Associate Principal/Branch Manager, Bailey Edward, Fox River Grove, Ill.

Dennis P. Sczomak, PE, LEED AP, Senior Vice President, Peter Basso Associates, Troy, Mich.

Blake Smith, PE LEED AP, Project Manager, RMF Engineering, Raleigh, N.C.

Jason Sylvain, PE, Partner, National Higher Education Practice Leader, AKF Group LLC, New York City

Matthew Wiechart, PE, CxA, LEED AP, CEM, Principal/Senior Mechanical Engineer, TLC Engineering for Architecture Inc., Orlando, Fla.


CSE: What unique heating and cooling systems have you specified into such projects? Describe a difficult climate in which you designed an HVAC system.

Horkey: With the prevalence of high-performance HVAC systems requiring year-round chilled water and the predominance of high-pressure steam distribution systems on campuses, we have seen an increase in alternative chilled-water generation systems designed into projects. For example, using dry coolers for chilled water generation in winter for cold climates. There also has been more emphasis on absorption and electric chillers in combination to generate campus chilled water. This allows the institution to use real-time pricing to inform which equipment will be used for chilled-water generation.

Smith: We provided the design to renovate an existing space to become the lab for an electron microscope, which is an extremely precise piece of equipment that needs a critically stable environment to operate correctly. The room cannot fluctuate by 0.25°F over a 20-minute period, and temperature must be maintained while minimizing any air velocity. Other constraints included the room's ambient noise-pressure levels had to be very low, so the HVAC and room construction had to be designed to limit noise we created and mitigate exterior noise.

Sylvain: Working in the Northeast, the climate is less difficult and more of a benefit. On a recent project, our company was able to use natural ventilation to provide code-required ventilation for a 100,000-sq-ft consolidation of a university's humanities department. The project uses perimeter heating and cooling systems (fan coils and valance units) with operable windows for ventilation. In addition, this project has been designed to meet LEED v3 and will be occupied in the fall of 2020.

Wiechart: Design of chilled-beam systems in hot-humid climates has gained traction. There are at least three in the central Florida area for college and universities. These systems require dedicated outdoor-air systems that mitigate moisture in the airstream. The systems are energy-efficient as compared with a typical chilled-water distribution with VAV systems. Another unique design is using the indoor air quality procedure to limit ventilation to the building. By using an absorptive filtration system, outdoor air to the building can be reduced when compared with the ventilation rate procedure (typical design).

Locke: One university has an existing geothermal field they want to use for a new building on campus. Through data logged over time and information regarding the soil conditions, we were able to determine the field was adequate for the heating. However, we need to add supplemental heat-rejection equipment for the cooling cycle. The geothermal field would be the first stage and the cooling tower the second stage to meet the load requirements of the new building.


<< First < Previous Page 1 Page 2 Next > Last >>

Product of the Year
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
40 Under Forty: Get Recognized
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
MEP Giants Program
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
November 2018
Emergency power requirements, salary survey results, lighting controls, fire pumps, healthcare facilities, and more
October 2018
Approaches to building engineering, 2018 Commissioning Giants, integrated project delivery, improving construction efficiency, an IPD primer, collaborative projects, NFPA 13 sprinkler systems.
September 2018
Power boiler control, Product of the Year, power generation,and integration and interoperability
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Data Center Design
Data centers, data closets, edge and cloud computing, co-location facilities, and similar topics are among the fastest-changing in the industry.
click me