BIM turns back the clock

BIM has turned back the clock on the design process by putting the design professional into a virtual construction site.


Paul J. Orzewicz, PE, RMF Engineering, BaltimoreThe introduction of 3-D drafting or building information modeling (BIM) is beginning to restore my faith in the engineered drawing. But let’s start from the beginning. When I began in this industry the terms “triangle,” “straight edge,” “pencil sharpener,” and “French curve” (you forgot that one, didn’t you?) could be heard throughout the office every day of the week. But in the late 1980s, computer-aided design (CAD) programs were unleashed into the engineering world and the electronic designer was born. And terms like “mouse,” “tablet,” and “x-y coordinates” became the norm.

At first, we all loved the idea of drawing an object one time and having the ability to copy it or mirror it over and over with just a few clicks of the mouse. It saved us so much time and money that soon everyone had to have a computer on their desk. Our contract drawings were being completed in record time, project deadlines were being met, and more work was coming through the door. Life was good … or was it? Looking back now, we see that something was lost when we transitioned from hand-drafted plans to electronic-drafted files. In my opinion, designers lost the ability to look at a drawing and see beyond the cyan and magenta lines to determine what is really important.

As with all technology, new ideas emerge, advancements are made, and before you know it, the next big thing is here. And CAD was no different. There’s only one logical advancement from 2-D CAD drawings, and that’s 3-D models. That’s right, they are no longer called “drawings,” they are now “models.” But don’t fret—as we advance into the BIM universe, we are simultaneously stepping back to our old ways. With this latest advancement, BIM forces us to see our designs like never before. We now must input that third coordinate: the z coordinate, that third dimension that makes us look at our drawing as if we were the installing contractor. It puts us in the contractor’s shoes, allowing us to see complex installations like never before.

So when the INOVA Health System made the decision to build the INOVA Cancer Center Research Institute (ICCRI) to put all its cancer treatment and research departments under one roof, I knew immediately that BIM was going the play an important role in the success of this project.

Bringing together critically advanced medicine and cancer treatment research departments was certainly going to be a challenge for the architecture and engineering team. But the use of BIM allowed all of us to work together simultaneously in a single model, generating close coordination between all disciplines early in the design process.

The project had to be broken out into a core/shell package along with a separate fit-out package. Each package was to be permitted separately. I had worked on similar projects in the past, but nothing as complicated as this one. Addressing permit review comments and making changes to the drawings, and ensuring that both packages were properly updated and coordinated, was a difficult challenge and very time-consuming. However, I quickly learned that BIM gave us the ability to make a change in the model and see that change seamlessly appear in both permit packages, saving us significant time and effort.

So even though BIM is taking the engineering world into the 21st century, it has also turned back the clock on the design process by putting design professionals into a virtual construction site, where we can now view our designs in a 3-D perspective, and think like the installing contractor to reduce conflicts and change orders during construction.

Paul J. Orzewicz is a mechanical engineer/project manager at RMF Engineering.

ERIK , MA, United States, 05/08/14 07:30 AM:

Excellent viewpoint. My work has always involved small scale design, so I avoided CAD for a long time. I went from hand drafting to BIM nine years ago and have never looked back. I still enjoy drawing, but BIM puts us back to the model building of the past as our best representation .
DENIZ , Ontario, Canada, 05/12/14 06:07 PM:

Nice article. One point that was missing was the fact that most firms are employing CAD operators to prepare BIM models and not designers. This is reflected in the fact that a CAD operator can do a lot more harm than a CAD designer due to a lack of engineering/architecture education coupled with field experience. BIM software is only a tool, it does not replace the designer as a lot of firms have done in order to "control" costs. This is resulting in substandard design work that we as real professionals have to correct in the field during fabrication & installation coordination engineering. Again, BIM can be a great money saver for the building owner if it has been executed properly.

Mr. Deniz Yazici, M.A.Sc., P.Eng.,
President & Principal Engineer,
D.Z.Y. Drafting & Design Services Limited
Toronto, Ontario, Canada
Tony , Non-US/Not Applicable, Saudi Arabia, 05/13/14 02:05 AM:

Sorry, Paul, but for many, many years before the advent of BIM it was possible to make 3D models and view a project from the inside. It's just that the few CAD systems that had it well-organized (e.g. clash detection, automatic MTO etc.) were so frighteningly expensive that only the biggest companies could afford them. Others had to to do the best they could with standard CAD packages. But perhaps the biggest problem was that many 2D designers - often still transitioning from paper to CAD - were ****-scared of that extra D, or found it very difficult to think in 3D.
BIM has made life a lot easier by linking everything together seamlessly, working with "smart" objects which talk to and coordinate with one another readily available from manufacturers for slotting straight into the model, and having "tweakable" (parametric) blocks where necessary.
Anonymous , 05/13/14 09:39 PM:

BIM is only as good as the operator. Garbage in = garbage out
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
BIM coordination; MEP projects; NFPA 13; Data center Q&A; Networked lighting controls; 2017 Product of the Year finalists
Emergency lighting; NFPA 3 and 4; Integrated building systems; Smart lighting, HVAC design
Designing for energy efficiency; Understanding and applying NFPA 101 for mission critical facilities; Integrating commissioning and testing for fire alarm systems; Optimizing unitary pumping solutions
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
Driving motor efficiency; Preventing Arc Flash in mission critical facilities; Integrating alternative power and existing electrical systems
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
click me