A holistic approach to engineering for patient wellness

Properly designed power, air, and water systems in health care facilities can enhance care, promote healing, and ensure sustainability.

12/13/2013


Figure 1: Power energizes imaging and other necessary medical equipment. Courtesy: MAQUET Medical Systems, USAIn the health care setting, every clinician and caregiver is important for patient nurture; however, a hospital’s ability to cultivate wellness doesn’t end with its people. Building engineering systems contribute to the clinician’s surroundings to administer care, and the planning of engineering systems is critical to ensure that systems fully support a healing environment.

In its ongoing journey to heal itself, the health care community faces a daunting task. Conflicted with uncontrolled division of abnormal cells, genetic errors, cardiovascular defects, and challenges of bringing new life into the world, the community engages in a difficult adventure in both adult care and pediatrics.

We are also surrounded by environmental challenges. This includes the atmosphere’s power and forces: the sun’s energy and the effects of heat, flashes of lighting, roaring thunder, the force of the wind, seismic vibrations from the earth below, and the pouring mass of rain from the sky. Fires can occur both outside and inside the hospital, and facilities must withstand the alternating seasons of frigid and parched climates.

During the engineering system building design, the engineer must consider all these environmental factors. A holistic understanding of health care is the driving passion and motivation behind the design of engineering systems. This is the engineer’s purpose—not just the quality of the systems and the building, but most importantly the patient’s wellness. The engineer’s goal is in concert with the mission of the entire design team, architects, physicians, nurses, and the hospital.

Inside the building, engineers and clinical technological consultants communicate with the physician and nursing staff to understand the facility’s needs. Understanding is then developed into ideas and methods to bring the evolving advancement of technology to the medical staff  for patient care.

Power considerations

Figure 2: Proper lighting can boost patients’ comfort and ease self-care, such as in the Children’s Hospital of Orange County (Florida). Courtesy: Laguna Beach IndependentPower enables the physician to perform patient care outside of his or her human capabilities. It energizes imaging equipment that allows clinicians to see inside the human body; empowers instruments that assess patient wellness; illuminates the building so caregivers can perceive more than with the naked eye; activates building heating and cooling systems; and enables dietary systems to prepare food for patient nourishment. Likewise, it sustains technology and communication for proper patient care and monitoring. Power supports alarm systems that provide building annunciation and lessen the effects of catastrophes such as fire. Visual, audible strobes, smoke control, evacuation systems, and sprinkler devices must be strategically designed to alarm and protect the patient from fire and smoke.

Light gives insight to patient wellness and can comfort patients whose immune systems need an environment conducive to rest and healing. The color spectrum location and color temperature, scenery, stages, and levels of illumination should be evaluated for physician procedures and patient rest. Lighting design should include considerations for sterile and clinical use, and for the patient’s comfort, sensitivity, and intimacy. According to our circadian rhythm, light projection can mark a clear path to nourishment and restroom fixtures especially at night. Task lighting should be distributed for patient reading, entertainment, self-care, and mobility.

Air and water systems

Figure 3: Air provides breath, protection against infection, and body moisture and temperature stability for healing in Sandwell Hospital, Birmingham, U.K. Courtesy: Halton OyWater is life sustaining, supporting, and nourishing. It feeds and refreshes both human and plant life in the building, promoting healing. Water systems in health care settings should be designed to bring fresh, cold water to the patient for vitality and nourishment. Hot or warm water is needed to comfort, soothe, and cleanse the patient’s skin, removing bacteria that could hamper the curative process. Properly designed sewer systems are essential for gathering the waste at selected locations and safely directing all contaminants and infection outside of the building to a concentrated place for sterilization. Drain systems must be designed to protect the building and patient from thunderstorms and potential flooding. The water gathered by these drain systems can be returned to the earth to cultivate its resources.

Air handling systems in patient areas must be carefully examined by the engineer to ensure air purity; the air should be free of foreign particles, gasses, and pressurization from clean to unclean to protect the patient from infection. Furthermore, proper moisture levels need to be maintained for the patient’s hydration in respiration.

Regulation of the temperature throughout the health care facility also is crucial. A warm environment ensures blood movement to patients’ vital organs for bodily restoration, while cool air eliminates the growth of bacteria, overworking of vital organs, and dehydration. Regulating temperatures between certain tolerances provides homeostasis, which helps the human body fight off pathogens for nosocomial infections. Engineers also must consider the life-sustaining air that is administered to patients in pure oxygen or medical air for acute concentrated needs for respiration recovery and tissue renewal. Anesthetizing air is distributed to alleviate the patient’s resistance to surgery necessary for prescribed recovery. Concentrated locations of waste suction are also present to remove fluid during medical procedures.

Sustainability

Figure 4: Resources can be returned to earth for campus and facility reuse in administering patient care, as shown at the Virtua Voorhees Hospital in southern New Jersey. Courtesy: Dave Huh, DewberryThese high-performance design considerations apply not only to the people, but also to the environment. The engineer’s task is to preserve the earth’s resources in energy and utility consumption. Engineering systems must be commissioned, tested, measured, and verified to ensure proper building performance. Lean measures should be taken to minimize the overuse of earth’s treasures. Systems should exchange utility waste for efficient use of energy and to eliminate wasteful habits. To ensure sustainability for the environment and healthy living for future generations, resources should be returned to the earth at their highest level of purity.

By considering the healing effects of engineering systems in health care facilities, the engineer can create an ideal environment for administering care, enhancing patient recovery, and promoting environmental responsibility.


Jared Edwards is the CEO/managing principal and health care market driver for HES Consulting Engineers and has more than 16 years of experience in the mechanical, electrical, and plumbing engineering industry.  



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Water use efficiency: Diminishing water quality, escalating costs; Lowering building energy use; Power for fire pumps
Building envelope and integration; Manufacturing industrial Q&A; NFPA 99; Testing fire systems
Labs and research facilities: Q&A with the experts; Water heating systems; Smart building integration; 40 Under 40 winners
Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.