High potential energy savings with servo technologies

By connecting servo drives via the DC bus, up to a third of kinetic energy from braking resistors can be saved. If drives can capture energy from motors used for braking applications, up to 80% energy savings can be realized. Also look at power factor.

06/30/2011


Save kinetic energy in a process by connecting servo drives to a dc bus, B&R says.If drives can capture energy from motors used for braking applications, up to 80% energy savings can be realized. Other strategies can save additional energy. Because of increased environmental awareness and to take advantage of new business opportunities, more machine and system manufacturers seek energy savings in motion control technologies. If motors and drive components are generally working with a level of efficiency near 100% when operating at the rated load, it makes sense to have a look at the secondary components around the actual drive system. "The sum of many individual measures can turn out to be very significant. When using the right components, large amounts of energy can be saved in the area around the drive system with relatively little effort," said Alois Holzleitner, business manager for Motion Control at B and R.

Optimal drive sizing reduces energy consumption

B and R ensures that drives can be sized in a targeted manner using the Servosoft tool. The masses to be moved and the drives needed to do it can be perfectly matched, which reduces energy consumption to a minimum. For complex machines where movements are executed consecutively, kinetic energy is often released in the braking resistors in the form of heat. By connecting AcoposSmulti servo drives via the dc bus, up to 30% of the energy used for movements can be saved. Brake energy is stored in capacitors and made available at a later time for acceleration. The user profits not only from efficient use of energy, but also from a cooler control cabinet because the heat from the resistors is greatly reduced.

Active energy regeneration saves up to 80%

In cases where braking and acceleration within an axis group do not often take place simultaneously, a further increase in energy efficiency can be achieved through active energy regeneration on the power mains. While all of the brake energy is put to use, unavoidable friction remains as the sole source of loss. With the use of modern Acoposmulti drive systems, it is possible to cost-effectively regenerate up to 80% of the energy previously lost as heat in the resistors. Energy-saving measures are supported by B and R through cold-plate control cabinet installation. This provides the option of using the energy from heat loss that occurs in the servo drives themselves where it is needed via fluid circulation and a heat exchanger.

"A big advantage of cold-plate technology is that a separate cooling device is no longer needed for the control cabinet. This provides savings of up to 23%," said Holzleitner.

Power factor savings

A further energy-saving effect of using the Acoposmulti family of products is correcting the total power factor (TPF) to 1.0. While conventional inverters with a small TPF exhibit considerably higher effective power consumption, which leads to unnecessary loss in the supply lines and transformers, the active power supply of the ACOPOSmulti ensures that the energy is used efficiently. "This saves up to 50% of the infrastructure costs by reducing the size of wires, feed components and fuses," Holzleitner said.

www.br-automation.com

http://www.controleng.com/channels/sustainable-engineering.html

http://www.controleng.com/channels/machine-control.html



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2014 Product of the Year finalists: Vote now; Boiler systems; Indirect cooling; Integrating lighting, HVAC
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.