Fire detection, protection in critical facilities

Critical facilities, such as health care buildings and hospitals, require fire alarm and detection specifications at a higher level than in other buildings.


This article has been peer-reviewed.Learning objectives

  • Know the codes and standards that dictate fire alarm and detection.
  • Understand fire alarm and detection requirements as specifically related to health care occupancies.
  • Learn about fire alarm and detection in ambulatory health care facilities and assisted-living facilities.

Critical facilities, such as hospitals and nursing homes, require protection using an increased level of fire alarm and detection compared to many other types of facilities. Most of the fire alarm requirements are directly related to patient care or emergency procedures; however, some requirements are related to the unique nature and large areas in critical-care facilities. Health care occupancies are the portions health care facilities, such as hospitals and nursing homes, where occupants are incapable of self-preservation and are treated on an inpatient basis. The term “health care facilities” also includes ambulatory health care facilities, clinics, doctors’ offices, and portions of assisted-living facilities.

This article will reference the following codes and standards and how they relate to health care facilities:

Note that Centers for Medicare & Medicaid Services (CMS) and the various accrediting organizations that certify and accredit health care organizations currently use the 2000 edition of NFPA 101. There are some differences between the 2000 and 2015 editions of NFPA 101 with respect to fire alarm and detection requirements, with increasing requirements for such systems in more recent editions of NFPA 101.


Zoning of fire alarm systems is critical in health care occupancies. It helps facility personnel determine where a potential fire incident is occurring, and assists the fire department in finding a fire. The best design practice for these facilities is to match the fire alarm zones to the smoke compartments. Smoke compartments are created in health care occupancies to establish temporary areas of refuge involving the horizontal relocation of patients/residents by dividing most stories into compartments of 22,500 sq ft or less. The zoning of sprinkler systems should also be consistent with smoke compartment and fire alarm zones. Further zoning of the fire alarm zone is also possible depending on the nature of departments in a smoke zone. For example, the smoke zone could be broken down into two different fire alarm zones if there are two unique departments in that smoke zone (see Figure 1).

Fire alarm zoning is permitted to be coordinated with sprinkler zones (NFPA 101, Paragraph for all occupancies. In health care occupancies, fire alarm zones are permitted to coincide with smoke compartments (NFPA 101, Paragraph In addition, NFPA 99 (Paragraph specifically requires that all smoke zones and fire alarm zones be coordinated. As such, emergency control functions can be programed to coincide with the emergency plans that are based upon the smoke compartmentation within the facility.

Most modern fire alarm systems for large health care occupancies use addressable fire alarm initiating devices. As such, the programming of control functions by smoke compartments is a relatively simple activity. Zoning notification appliances per zone can be more difficult, but is often desired if notification occurs by zones, e.g., when selective notification concepts are to be used. If notification appliances are to be zoned, the devices must be wired independently by zone or more recent technology involving addressable notification devices must be used.

Figure 1: Zoning for health care occupancies should be clearly indicated on both the life safety plans and fire alarm drawings. Clearly indicating the zones helps installers and facility personnel determine where compartments of 22,500 sq ft or less are required. All graphics courtesy: Koffel AssociatesNotification

Fire alarm notification appliances have evolved drastically over the years. Older fire alarm systems only used electronic bells or chimes, and older health care occupancies typically used a coded notification signal to identify the zone or device in alarm. Strobes are also necessary to make the building compliant with accessibility requirements. NFPA 72 also requires strobes in all public spaces, assembly areas, and as needed in other parts of a health care facility.

Most modern fire alarm systems in health care occupancies are equipped with speakers that can multitask by providing both automated emergency communication messages and live messaging. Such technology also is easier to use in conjunction with coded messages such as “Code Red, Floor 3, East Wing” to provide increased information to facility staff without alerting patients, residents, and visitors.

Speakers for emergency communication systems are required where zoned or delayed egress procedures are desired (NFPA 72, Paragraph,). In addition, emergency voice/alarm communications systems are required for all high-rise buildings (NFPA 101, Paragraph

Fire alarm speakers also can be used as a mass notification system (MNS). These systems are designed to broadcast more information than just a standard fire alarm system. Their capabilities include automated and live messages for weather emergencies, shooter events, bomb threats, or other events where communication to buildings occupants is desired.

<< First < Previous 1 2 3 Next > Last >>

No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Commissioning lighting control systems; 2016 Commissioning Giants; Design high-efficiency hot water systems for hospitals; Evaluating condensation and condensate
Solving HVAC challenges; Thermal comfort criteria; Liquid-immersion cooling; Specifying VRF systems; 2016 Product of the Year winners
MEP Giants; MEP Annual Report; Mergers and acquisitions; Passive, active fire protection; LED retrofits; HVAC energy efficiency
Driving motor efficiency; Preventing Arc Flash in mission critical facilities; Integrating alternative power and existing electrical systems
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
Designing generator systems; Using online commissioning tools; Selective coordination best practices
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
click me