Specifying for green building: Part 1

How do you structure specifications to properly specify building performance that is compliant with a green building code such as LEED v4?

01/23/2014


Designing a project to a green building code, such as U.S. Green Building Council LEED v4, Green Globes, ASHRAE Standard 189.1, or the International Green Construction Code (IgCC), requires a the engineer think outside the normal approach to specifying.

There are four common ways to specify a system or assembly, and it is key to remember that each method has an associated level of risk or liability for the engineer. The rule of thumb is that the more detailed a specification, the more liable the engineer is for the final performance. In the order of least to most potential liability and difficulty to write, these four types of specifications are descriptive, performance, reference standard, and proprietary.

A descriptive specification, the most traditional and comprehensive type of specification, provides a detailed description of the final product or system qualities and workmanship. It has no manufacturer or products restrictions as long as they meet the described level of quality. A performance specification specifies levels of performance that the finished product must meet. A reference standard specification relies on a third-party standard that the engineer should be very familiar with, which may be incorporated by reference.

And on the other end, a proprietary specification provides not much more than the model number and installation standards. (In actuality, there is quite a bit more to a proprietary specification, but it is too much to include in a blog post. See the CSI Construction Specifications Practice Guide for more detailed information.)

You can see the quandary. The more specific the requirements, the more responsible the engineer is for final performance of the system. In a descriptive specification, the specifying information is broad enough that the contractor has a wide range of products to review, choose from, coordinate, and integrate into the finished product. Meanwhile, in a proprietary specification, the contractor is limited to a certain product, which also limits pricing flexibility, and the engineer assumes liability for the choices made while writing the specification.

Ideally, the answer is a holistic approach to the drawings and specifications that clearly communicates minimum levels of performance and available product choices. This requires an understanding of the different types of specifying, and how to use multiple types within one specification document.

Part 2 will be a discussion on performance specifying.

What have your experiences been when specifying for LEED, IGCC, or Green Globes? Does this correlate with your approach and experience? Share your experience via the “comments” section below.


Michael Heinsdorf, PE, LEED AP, CDT is an Engineering Specification Writer at ARCOMMasterSpec. He has more than 10 years' experience in consulting engineering, and is the lead author of MasterSpec Electrical, Communications, and Electronic Safety and Security guide specifications. He holds a BSEE from Drexel University and is currently pursuing a Masters in Engineering Management, also at Drexel University.



Product of the Year
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
40 Under Forty: Get Recognized
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
MEP Giants Program
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
July 2018
Integrating electrical and HVAC systems, emerging trends in fire, life safety, ASHRAE 90.4
June 2018
Chilled-water system design, NFPA 99, Grounded power supply systems
May 2018
40 Under 40 winners, fire and life safety, performance-based designs, and more
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Data Center Design
Data centers, data closets, edge and cloud computing, co-location facilities, and similar topics are among the fastest-changing in the industry.
click me