Sorting Out the Interconnect Standard for Distributed Generation's Future

Editor's Note: The following is excerpted from the article "Intertie Requirements for DGs Connected to Radial Distribution Feeders," which appears in full in the EGSA supplement accompanying this issue of CSE. Distributed generation is attracting more attention as a way to ensure local power supply and add to utility-system resources.


Distributed generation is attracting more attention as a way to ensure local power supply and add to utility-system resources. However, ensuring safe, reliable operation of distributed generators (DGs) requires close attention to this equipment's connection to both utility lines and a facility's internal distribution system. The Institute of Electrical and Electronics Engineers (IEEE) has developed standards for such interconnections, addressing the connection of DGs of various sizes to systems of varying complexity. IEEE Standard 1547-2003, Standard for Interconnecting Distributed Resources With Electric Power Systems, was published in June.

Distributed generation has proven to be a viable alternative to large, centralized generation plants for meeting individual facilities' electricity needs. When such systems are designed, utilities establish intertie requirements to ensure safe and reliable power delivery both within the facility and throughout the facility's utility system.

Basic intertie protection for DGs connected to radial distribution feeders includes preventing islanding—where an area has power but the surrounding area does not—of the DG, by detecting abnormal voltages and frequencies at the point where utility and facility distribution systems meet: the "point of common coupling" (POCC).

As the size of the DG increases in relation to the distribution feeder source and load, the protection required increases to include fault detection for faults on the distribution feeder. In such scenarios, current reversal in the utility-substation breaker can result, making directional protection a possible necessity.

The connection-type of the interconnecting transformer can further complicate protection requirements. Systems with an ungrounded transformer primary will require ground overvoltage protection, while systems with a grounded transformer primary will need additional overcurrent protection.

Finally, where DG power is exported onto the utility system, transfer trip relaying may be required to ensure tripping of the DG before the utility breaker recloses.

As Standard 1547-2003 evolves, with the addition of guides for application, testing and commissioning, and monitoring/information exchange/control, utilities will adjust their standards and make it easier to meet the many challenges associated with distributed generation. However, even with intertie standards becoming more defined, each distributed generation installation will still require the engineer to evaluate these applications on a case-by-case basis.

Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
How to use IPD; 2017 Commissioning Giants; CFDs and harmonic mitigation; Eight steps to determine plumbing system requirements
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Power system design for high-performance buildings; mitigating arc flash hazards
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me