Purifying water with nanoparticles

A company says 3-D nanoparticles boost the efficiency of water purification.

09/29/2008



Adding nanoparticles to a water purifying membrane can double its efficiency, according to a startup company based in Los Angeles. In this story from Technology Review , the author describes how NanoH2O , says its novel approach could make such purification technology a viable solution to a growing problem.

Reverse osmosis--feeding water through a semipermeable membrane to filter out impurities--is widely considered to be the most effective way to desalinate water. But it is very energy-intensive, and therefore expensive, because water has to be forced through the membrane under pressure. A key way to reduce the costs involved is to increase the water throughput for the same pressure. But for many years, improvements in membrane technology have been incremental at best, says Jeff Green, NanoH2O founder and CEO.

NanoH2O has found that adding porous nanoparticles to membranes can dramatically increase the efficiency with which water can be filtered. "Under similar pressure, twice as much water goes through," says Green. In a desalination plant, this increased permeability would reduce energy requirements by 20% or increase water productivity by 70% for the same cost, he adds.





Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
How to use IPD; 2017 Commissioning Giants; CFDs and harmonic mitigation; Eight steps to determine plumbing system requirements
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Power system design for high-performance buildings; mitigating arc flash hazards
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me