Improving construction industry efficiency with IPD

A review of the basic concepts relating to an integrated project delivery (IPD) model and the role that the consulting engineer plays in the collaborative efforts to design, build, and operate IPD facilities as efficiently as possible.


Learning objectives

  • Understand the limitations of a traditional delivery model and how it contributes to inefficiencies in the construction industry.
  • Learn the basic concepts and advantages of an integrated project delivery (IPD) team.
  • Identify the value that the consulting engineer provides in an IPD model.

From an owner's standpoint, the delivery model for construction projects has remained relatively unchanged throughout the last several decades. The traditional delivery models (TDMs) available have been design-bid-build (DBB) or design-build, both of which follow a very linear design process. Under a traditional method, the owner has heavy involvement early in the process by helping define project requirements, but the owner then passes the leadership to the designers and builders who assume the responsibility and risk throughout the next stages of the process. With the process moving down this linear path, silos naturally occur, collaboration is often minimized, and the opportunity for project improvements and modifications becomes increasingly limited as the design and construction process progresses.

Other common delivery methods that should be noted include construction manager at risk (CMAR) and construction manager (CM). Under CMAR, the construction manager is committed to deliver a project within a guaranteed maximum price and schedule. Under the CM delivery method, the construction manager acts as an agent directly to the owner and acts in his or her best interest. The CM provides guidance and recommendations on the project-delivery process, but has no financial obligation to the project budget. As part of the CM method, the owner takes on the responsibility of holding subcontracts and assumes the risk of cost and schedule.

The overall lack of change in the delivery model has left the construction industry's efficiency-in terms of output versus input-relatively flat over several decades. During this same time, other sectors such as retail and manufacturing have been disrupted by technological advances and Lean principles that have resulted in drastic productivity and efficiency improvements-nearly double that of the construction industry for the same period. According to McKinsey & Co., this lag in construction productivity costs the global economy $1.6 trillion per year. Poor communication, lack of standardization, and noncollaborative contracts are among the common causes cited for this lack of productivity within the industry.

The productivity gap within the construction industry is well-known, and many groups are looking for solutions by using newer technology, modifying operations, and engaging in shared-risk contracts, among other approaches. One such solution, which has shown promising results in improving the productivity gap and overall project outcomes, is the adoption of an integrated project delivery (IPD) model. Under this model, many of the causes attributed to lack of productivity in the construction industry are addressed to improve project outcomes.

Contractually integrated team

IPD was developed based on the construction industry's need for a more collaborative delivery method. The goal of the IPD model is to facilitate projects with more efficiency, lower costs, higher quality, more effective use of resources, and a balanced risk and reward among all team members. IPD accomplishes this through two key actions:

  • The assembly of a multidisciplined team at the start of the project. Although IPD is an owner-driven process, it relies on a partnership between the owner, design team, and contractors to collaborate early in-and throughout-the design process to make major project decisions. This early, extensive planning, when done effectively under a collaborative effort, can lead to substantial savings in cost and schedule, along with improved building performance.
  • Contractually tying the integrated team together by aligning their compensation with project success. Several types of contracts may be used by an IPD team to align their compensation with project goals as well as establish important metrics for defining their success. These contract types include multiparty (owner/designers/contractor) and poly-party (owner and entire risk/reward team).

Figure 1: This image lists the differences between the integrated project delivery (IPD) model and traditional delivery models (TDM). Courtesy: IMEG Corp.By contractually binding team members to common project goals and sharing the same risk and reward, a collaborative approach will innately be formed in which team members' behaviors will be geared toward the overall success of the project.

Among the many differences between the IPD model and traditional methods is compensation for individual team members, which is not directly tied to project success in a TDM (see Figure 1). This lack of financial connection between team members often leads to decisions being made based on what is best for the individual team member rather than what is best for the overall project. The IPD model's combination of assembling an integrated team early in the process and then tying the team together contractually with financial implications fosters behaviors that drive productivity and quality throughout all stages of project completion.

To ensure that an IPD model is successful, it is critical to establish an integrated team that is committed to forming a collaborative approach. Often, the IPD team is broken into two groups, known as the primary participants and the key supporting participants. The primary participants consist of the owner, architect, consulting engineers, construction manager, and any other individuals who may have a substantial involvement and responsibility throughout the project. They typically are the entities who are bound together through a contractual relationship. The key supporting participants are often subconsultants and subcontractors who are also integrated into the team early in the process, but they may only have a contractual agreement with one of the primary participants.

Responsibilities for primary team members vary by project, but they are expected to be the group that collectively defines the project goals and project metrics, ultimately defining the success of the project. Common key documents include the owner's project requirements (OPR) and the basis of design (BOD). Both documents serve as a roadmap to define project quality and expectations. Primary team members also are responsible for establishing the decision-making methods and processes that the group will use to move the project forward. Ultimately, no matter the makeup of the primary or key supporting participants, it is important to establish an atmosphere that promotes trust, accountability, and communication.

The early assembly of the multidisciplined team at the beginning of an IPD not only cultivates collaborative efforts and desired behaviors, but also has a significant impact on the overall cost, schedule, and quality. This is best understood when comparing the design progression of a traditional delivery method with IPD. Figure 2 overlays the MacLeamy Curve with the design progression for a TDM and IPD. The MacLeamy Curve, in simple terms, shows that a project becomes costlier to change as it becomes further developed. Under IPD, the early assembly of a collaborative team helps to facilitate design decisions early on, thus allowing for the ability to make changes with less impact on cost. This concept is self-evident to many in the design and construction community, and when adopted as a core principle of IPD, it can have a major impact on the project outcome.

<< First < Previous Page 1 Page 2 Next > Last >>

Product of the Year
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
40 Under Forty: Get Recognized
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
MEP Giants Program
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
November 2018
Emergency power requirements, salary survey results, lighting controls, fire pumps, healthcare facilities, and more
October 2018
Approaches to building engineering, 2018 Commissioning Giants, integrated project delivery, improving construction efficiency, an IPD primer, collaborative projects, NFPA 13 sprinkler systems.
September 2018
Power boiler control, Product of the Year, power generation,and integration and interoperability
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Data Center Design
Data centers, data closets, edge and cloud computing, co-location facilities, and similar topics are among the fastest-changing in the industry.
click me