High standards for labs, research buildings

Laboratory and research facilities are high-performance buildings, often with complex systems and exacting standards for engineers to meet. New and existing laboratory and research buildings have unique mechanical, electrical, plumbing, and fire/life safety challenges.


Bryan Laginess, PE, LEED AP, Senior associate, Peter Basso Associates, Troy, Mich. Jeremy Lebowitz, PE, Vertical market leader, Rolf Jensen & Associates Inc., Framingham, Mass.Brian Rener, PE, LEED AP, Associate, SmithGroupJJR, ChicagoJoshua Yacknowitz, PE, LEED AP, Associate principal, Arup, New York City

  • Bryan Laginess, PE, LEED AP, Senior associate, Peter Basso Associates, Troy, Mich.
  • Jeremy Lebowitz, PE, Vertical market leader, Rolf Jensen & Associates Inc., Framingham, Mass.
  • Brian Rener, PE, LEED AP, Associate, SmithGroupJJR, Chicago
  • Joshua Yacknowitz, PE, LEED AP, Associate principal, Arup, New York City

The Dept. of Energy’s National Renewable Energy Laboratory (NREL) Energy Systems Integration Facility (ESIF) in Golden, Colo., covers 182,500 sq ft. ESIF is a first-of-its-kind research user facility with a unique merging of three very specialized components: an ultra-energy-efficient workplace that consumes 74% less energy than the national average for office buildings, one of the world’s most energy-efficient high-performance computing data centers, and sophisticated high-bay laboratory spaces with outdoor test areas. All of the labs are connected by a research electrical distribution bus (REDB), which functions as a power integration circuit capable of connecting multiple sources of energy with experiments. The unique design of the facility, which houses 200 researchers, works in tandem to advance NREL’s sustainable mission of integrating clean and sustainable energy technologies into the grid. SmithGroupJJR served as designer and lab planner and engineer of the three-story research complex. Affiliated Engineers Inc., Madison, Wis., was the mechanical, electrical, and plumbing (MEP) engineer of the laboratory systems. Courtesy: Bill TimmermanCSE: Please describe a recent laboratory/research facility project you’ve worked on.

Bryan Laginess: I was recently involved in a renovation of an approximately 10,000-sq-ft clinical lab located within a Detroit area community hospital. The existing operation of this facility did not flow in an efficient way for the users. Dividing walls between work areas created difficulties with communication and foot traffic. The project was designed to be constructed in five phases to minimize disruption to the operation of the lab. The existing infrastructure was modified to accommodate the renovated areas.

Jeremy Lebowitz: RJA is currently involved with the new Novartis Institutes for BioMedical Research project under construction in Cambridge, Mass. The project is located across the street from some of their current facilities near the MIT campus, and includes two new buildings encompassing 550,000 sq ft of laboratory and office space. It’s very exciting getting to work with such a talented design team on a project of this magnitude.

Brian Rener: The U.S. Dept. of Energy’s National Renewable Energy Laboratory’s Energy Systems Integration Facility (ESIF) in Golden, Colo., is designed to enable complex systems research and development that fully integrates the most advanced simulation, data analysis, engineering, and evaluation techniques to transform the nation’s energy infrastructure. SmithGroupJJR provided architecture, lab planning, and engineering services for the 182,500-sq-ft showcase facility, which houses 200 scientists and engineers working together to transform energy infrastructures in 14 sophisticated high-bay laboratories, a high-performance computing data center, and an ultra-green workplace. The high-performance computing data center is one of the most energy-efficient data centers in the world. The office building boasts a highly calibrated envelope, daylighting harvesting and delivery devices, low-velocity active chilled beams, and under-floor air ventilation with operable windows and convection shafts. This results in staggeringly low energy consumption of 74% below the national average for office buildings. ESIF has achieved U.S. Green Building Council LEED Platinum certification and was named the 2014 Laboratory of the Year by R&D Magazine’s editors. 

Affiliated Engineers Inc., Madison, Wis., was the mechanical, electrical, and plumbing (MEP) engineer of the laboratory systems, including the research electrical distribution bus (REDB) and the supervisory control and data acquisition (SCADA) system.

Joshua Yacknowitz: Columbia University Northwest Corner Building was completed in 2010, and is a 14-story interdisciplinary research facility located on Columbia’s Morningside Heights, N.Y., campus. The building is 188,000 gsf, of which approximately 100,000 gsf is dedicated to laboratory space on seven floors of the building (the remaining floors are for academic and other uses).

CSE: How have the characteristics of such projects changed in recent years, and what should engineers expect to see in the next 2 to 3 years?

Yacknowitz: One of the things I have noticed and taken some encouragement from is the greater alignment between the institutional capital project management, facilities maintenance, and environmental/health/safety departments. There is always a tension between capital cost, operations, and safety in the design of lab buildings, and now I see more productive discussions early in the design phase between these departments in identifying risks and agreeing on coordinated design approaches.

Rener: We should see increasing emphasis on energy and sustainability, flexibility for change, and lifecycle cost analysis.

Laginess: Flexibility and room for growth are of high importance. Lab equipment is constantly improving, making new equipment available. Owners are looking for their facility to adjust with minimal impact on day-to-day operations. An example of this is accommodation for future sinks. In a recent project, PBA prepared all the lab benches with sanitary and water connections even though some did not have a sink in the current scope. This allowed the owner the ability to add a sink in the future without requiring additional legwork, including saw-cutting the floor.

Lebowitz: It’s amazing how quickly life sciences research evolves. It used to be that biology users had next to no solvents and we could locate these uses anywhere in a building—whether that was the top story of a high-rise or in the basement. Now, you walk into one of their labs and they have five or six mass spectrometers, which all use flammable solvents. If the current trends continue, I would hope to see a centralization of solvent distribution and waste collection, so that users are less likely to personally handle chemicals, which can reduce personnel exposure to hazardous materials as well as spills.

CSE: Could you please explain some of the challenges you’ve faced dealing with laboratory/research facilities in mixed-use buildings?

Laginess: Maintaining proper pressure relationships between the lab and nonlab spaces is critical. Proper differential pressure monitoring and control is required to ensure air is flowing in the right direction.

Lebowitz: The biggest challenge we usually face is how to allocate chemicals within a tenant space. If a user is moving in on a higher floor, they may be restricted to smaller quantities of solvents based on the construction of the building or other tenants. Often we see users needing to construct high hazard space for chemical use and storage, which is certainly possible in most cases; it just costs a bit more than a standard laboratory would on a square-foot basis. Another obstacle is if users don’t have a great handle on their inventory—it becomes difficult to establish exactly what the building and fire codes dictate they need for protective features.

Yacknowitz: I guess that depends a great deal on whether the building is new or existing, the owner type, and the makeup of the design team. In general, though, the design of laboratory mechanical, electrical, plumbing (MEP) systems (and to some degree structural) infrastructure is much different from other program types, often requiring greater MEP and shaft space, greater floor-to-floor heights, and specialized systems. In mixed-use buildings this tends to result in the lab program being sequestered from the more standard program spaces, and you end up with a “building within a building” approach. Trying to rationalize things like vertical services becomes more challenging because each program type has a different set of preferential arrangements, and the interface between the two is sometimes awkward, leading to some odd compromises.

Rener: Often labs or research facilities will have vastly differing needs for power and cooling from other types of uses in the same building. There are challenges on how to design central utility systems such as chilled water, or generators to serve mixed-use space, or make independent components for the lab and research uses, which can have vastly different year-round profiles. For example, a high-performance computing center will need year-round cooling, but placing this in an educational building where cooling systems are not used all year long can present challenges for right-sizing chilled water plants.

<< First < Previous 1 2 Next > Last >>

No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Economics of HVAC systems; NFPA 110-2016; Designing and choosing modular data centers
Combined heat and power; Assessing replacement of electrical systems; Energy codes and lighting; Salary Survey; Fan efficiency
Commissioning lighting control systems; 2016 Commissioning Giants; Design high-efficiency hot water systems for hospitals; Evaluating condensation and condensate
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
Driving motor efficiency; Preventing Arc Flash in mission critical facilities; Integrating alternative power and existing electrical systems
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
click me