Generator ratings and the implications for data centers


Figure 3: A continuous rating, represented in this load profile, is intended for peak shaving programs where a designated block of power is sold back to the utility or used on-site, but is not intended for applications where the load varies, like a data center. Courtesy: Kohler Power SystemsGenerator rating basics

Let’s return to the rating of generators and look at the three major components that impact their rating and performance: engine, alternator and cooling System.

Engine. The component that impacts the generator rating most is the engine, because it is the actual power source. Every engine has a horsepower rating at a defined speed. Engine ratings are determined based on the application’s load factor, site altitude, and maximum ambient temperature during operation. The load factor is the percentage of engine power used over a given time period.

Altitude and ambient temperature extremes at the installation site can also affect engine performance. Each engine manufacturer will specify altitude and ambient temperature derates. A larger engine may be required for a high-altitude, high-ambient-temperature site (e.g., New Mexico) than for one at sea level (e.g., Wisconsin). The generator manufacturer and its local representative will have engine-rating information for load factor and altitude and temperature derates.

Alternator. The alternator converts the engine’s mechanical power into electrical power. Therefore, the electrical power from the alternator is always a lower value than the engine’s mechanical power; this is due to losses that occur in the conversion of mechanical power to electrical power. The level of loss is determined by the alternator efficiency. Alternator efficiency varies from manufacturer to manufacturer and from alternator to alternator.

Alternator design and construction is an important factor to consider for reliability. The durability of an alternator can be determined by looking at a few key design parameters governed by the National Electrical Manufacturers Association’s Motors and Generators (NEMA MG 1) standard for alternators. The main attributes to look at are the alternator insulation class and temperature rise capabilities.

Cooling system. Another important factor to consider in the sizing process is the generator cooling system. Most generator manufacturers offer 40 C (104 F) and/or 50 C (122 F) cooling systems. The peak temperatures the generator may experience in a year are a factor in selecting the cooling system. Even if you properly size the generator, failing to specify the right cooling system can lead to performance and durability problems.

Impact of EPA emission standards

With the introduction of emission standards by the U.S. Environmental Protection Agency (EPA) for new stationary and nonroad engines, the application of equipment must be considered when choosing a rating for generator sets installed in the United States. We must understand the EPA’s newly introduced terminology to properly choose the generator rating.

A stationary “emergency” application is where the generator set remains in one location for 12 months or longer, it is the secondary power source when the utility (primary power source) fails, and annual maintenance and readiness testing is less than 100 hours. The term “emergency” refers to the use of the engine when an emergency occurs (utility fails). In virtually all cases, these applications will have a “standby” generator rating. Remember that standby-rated generators can run an unlimited number of hours with varying load during the utility outage. Stationary emergency applications in the U.S. require diesel engines that are EPA-certified to Tier 3 if their power output is between 50 bhp (40 kW) and 560 bhp (500 kW), or certified to Tier 2 if their power output is above 560 bhp (500 kW).

A stationary “non-emergency” application is where the generator set is either the primary power source or a secondary power source connected to an unreliable utility with planned high hours of annual usage. Additionally, using it for peak shaving, interruptible rate, or any financial arrangement with a utility qualifies it as a non-emergency application. Non-emergency applications may use prime, limited running time or continuous ratings. Non-emergency applications in the U.S. require EPA-certified Tier 4 diesel engines, which are designed for lower emissions and are much more expensive than their stationary emergency counterparts at the Tier 2 and Tier 3 levels.

A nonroad application is where the generator set is in more than one location within a 12-month period. Typical applications are mobile, rental, or containerized generator sets. Nonroad applications may use prime, limited running time or continuous ratings. These applications require EPA-certified Tier 4 diesel engines.

There are many variables to consider when properly sizing generators, particularly when specifying for a data center. Choosing the proper generator requires an understanding of how the generator will be applied and what the site conditions will be. It is important to work with local or factory-based manufacturing representatives to properly size the generator for each application. Considering all these factors will provide years of reliable power.

Todd Matte is the manager of the corporate accounts project management group at Kohler Power Systems, located in Kohler, Wis. Matte joined Kohler in 1995 and has held multiple positions with the company including application engineering and product marketing roles. He has a bachelor’s degree in electrical engineering from the University of Wisconsin-Milwaukee.

<< First < Previous Page 1 Page 2 Next > Last >>

Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
How to use IPD; 2017 Commissioning Giants; CFDs and harmonic mitigation; Eight steps to determine plumbing system requirements
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Power system design for high-performance buildings; mitigating arc flash hazards
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me