Designing higher education facilities: HVAC

The world is getting more high-tech, and the colleges and universities preparing students to work in an increasingly advanced environment must keep pace. HVAC systems, indoor air quality, and other related issues are discussed.


David P. Callan, PE, Vice President, McGuire Engineering, ChicagoMichael Chow, PE, CxA, LEED AP BD+C, Member/Owner, Metro CD Engineering, LLC Powell, OhioEssi Najafi, FE, Principal, Global Engineering Solutions, Bethesda, Md.Mike Walters, PE, LEED AP, Principal, Confluenc, Madison, Wis.


  • David P. Callan, PE, Vice President, McGuire Engineering, Chicago
  • Michael Chow, PE, CxA, LEED AP BD+C, Member/Owner, Metro CD Engineering, LLC Powell, Ohio
  • Essi Najafi, FE, Principal, Global Engineering Solutions, Bethesda, Md.
  • Mike Walters, PE, LEED AP, Principal, Confluenc, Madison, Wis. 

 Modern college and university projects typically have advanced research facilities, such as the 160,000-sq-ft New Physical Sciences Complex at the University of Maryland in College Park.The project's first phase includes specialized laboratory spaces, designed with strict criteria for vibration-sensitive and electromagnetic-interference control. Courtesy: Global Engineering SolutionsCSE: What unique HVAC requirements do colleges and universities have that you wouldn't encounter on other structures? 

Najafi: What makes the design of college and university buildings unique from an HVAC design perspective is the challenge of meeting the stringent energy code and LEED requirements of today while using the existing and often antiquated infrastructure. This infrastructure includes central campus steam boilers, dormitories originally designed to use natural ventilation, and roof structures that were not designed to hold rooftop equipment. Modern energy code requirements are pushing design engineers away from steam systems, while the campus engineers still desire centrally located heating and cooling equipment for maintenance purposes. Additionally, recent changes to the IECC requirements for building envelope construction and sealing have made use of natural ventilation difficult, if not impossible.

CSE: What updates in fans, variable frequency drives, and other related equipment have you experienced?

In addition to the advent of the electrically commutated motor, traction has been gained in this industry for fan-array technology. Within the past 10 years fan-array driven air handling equipment has become commonplace in locations such as university hospital and laboratory spaces where redundancy is required, but there is not sufficient space to install two or more air handling units. The fan array allows maintenance to be performed on failed fan components while still providing HVAC services to critical spaces.

CSE: What indoor air quality (IAQ) challenges have you recently overcome?

We were recently tasked to provide HVAC infrastructure for a new biosafety level (BSL)-2 laboratory that was installed in a space previously used as a locker room. The building in which this laboratory is to be constructed was originally built in 1975 as a public health building that included athletic, administrative, and locker room spaces. Our task as designers was to provide redundant air handling capability, variable air volume control, and energy recovery. The challenge with this design was the location. The laboratory was located on the ground floor, with an active gymnasium directly overhead and a small mechanical room located in the basement below. There was insufficient space in the mechanical room for redundant air handling equipment, so we provided a single (100% outdoor air) air handling unit with a fan-array air system and redundant cooling and heating coils. Variable air volume terminal supply and exhaust units were employed to minimize the waste of energy for this 100% outdoor air system. Additionally, redundant strobic fans were used to provide variable exhaust flow while maintaining exhaust air discharge velocity. To further reduce energy waste, a glycol run-around coil heat recovery system was installed in the exhaust and outdoor air ductwork.

CSE: In your experience, have alternative HVAC systems become more relevant?

rs: I do think alternative HVAC strategies are increasingly becoming the norm. Some strategies-like chilled beams-are still difficult to advance through a design process with many constraints. I've found that demand control ventilation has very wide applicability (research labs, offices, variable occupancy academic environments, etc.) and offers a valuable mix of well-placed technology, simplicity, energy savings, and ventilation quality.

Alternative HVAC systems are beginning to gain traction in the industry as their time in service increases and energy conservation requirements become stricter. In particular, we have seen a significant increase in the call for variable refrigerant volume (VRV or VRF) systems.

CSE: In densely packed dorms and student housing, how do you achieve optimal HVAC and air quality?

Residence hall renovation projects can be extremely challenging. These spaces were designed for natural ventilation and have limited ceiling space for ductwork and piping. To circumvent this issue, we use a dedicated outdoor air system with corridor distribution to the living spaces. Heating and cooling (where required by the owner) is provided with chilled/hot water fan coil units or VRV units.

Product of the Year
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
40 Under Forty: Get Recognized
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
MEP Giants Program
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
November 2018
Emergency power requirements, salary survey results, lighting controls, fire pumps, healthcare facilities, and more
October 2018
Approaches to building engineering, 2018 Commissioning Giants, integrated project delivery, improving construction efficiency, an IPD primer, collaborative projects, NFPA 13 sprinkler systems.
September 2018
Power boiler control, Product of the Year, power generation,and integration and interoperability
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Data Center Design
Data centers, data closets, edge and cloud computing, co-location facilities, and similar topics are among the fastest-changing in the industry.
click me