Designing efficient K-12 schools

In a digital age, children across the U.S. are more technologically advanced than ever—and they require educational facilities that can keep up. Here, engineers with experience working on K-12 schools share views on what’s trending.



Maxwell Chien, PE, LEED AP BD+C, Associate, Kohler Ronan, New York City
Chuck Dale-Derks, PE, LEED AP, Principal, McClure Engineering, St. Louis
Evan J. Hammersmith, PE, LEED AP BD+C, CGD, Associate, Mechanical, Karpinski Engineering, Cleveland
Michael Lentz, PE, CPD, HFDP, Director of Operations, Baltimore Office, Setty, Baltimore
Rodney Oathout, PE, LEED AP, CEM, Principal | Energy + Engineering Leader, DLR Group, Overland Park, Kan.
Michael Rader, PE, CEM, Vice President and Chief Operating Officer, Barton Associates Inc., York, Pa.

In this science lab at Lorain High School in Lorain, Ohio, the HVAC is designed to throttle airflow based on the space loads and CO2 levels. Wall-mounted CO2 sensors quickly detect all spaces. Courtesy: Lisa Wilding, Karpinski EngineeringCSE: What’s the biggest engineering trend you see today in K-12 schools?

Maxwell Chien: Inclusion of a main distribution frame (MDF) or an intermediate distribution frame (IDF) closet to support information technology/audio-video (IT/AV) infrastructure. Increasingly, we are seeing schools providing advanced IT/AV planning to support the need for integrated AV systems for teaching and networking equipment for communication. These closets require additional year-round cooling that can sometimes, depending on load, be demanding. We also see a lot of makerspace labs that require special exhausts for laser printers, 3-D printing, and fabrication.

Chuck Dale-Derks: Trends include greater energy efficiency, voice-evacuation fire alarm systems, and a greater concern for (along with a larger number of) special-needs children. Card-access systems are also expanding to keep track of entry and exits and to keep facilities secured.

Rodney Oathout: We see data analytics as an emerging trend in K-12 projects today. Data analytics can be defined in many ways, but the most common interruption is a series of rules used in conjunction with the building automation system (BAS) to identify when the HVAC system is operating outside of the expected parameters. In a way, the systems continuously commission a building to identify opportunities for saving energy and managing system operation. These systems can have educational programs integral to the operation that can be used in STEM (science, technology, engineering, and math) curriculums.

Michael Rader: One of the most common trends that we see is the desire to create spaces that offer flexibility for different types of learning. This could range from individual study to team-collaboration spaces. The systems serving these spaces must be flexible and scalable to accommodate constant change.

CSE: What trends and technology do you think are on the horizon for K-12 school projects?

Rader: We are seeing trends toward customized learning approaches that are student- specific. This requires a greater flexibility in installed infrastructure since the program varies with the number of students.

Dale-Derks: We’re seeing fault-detection diagnostics for HVAC systems, voice amplification in every classroom, large-format touchscreens of at least 95 in., charging carts for tablets, and tablets for every student. Teachers are using mass communication apps to communicate with students’ cell phones as encouragement reminders for homework or assignments that are due or for encouraging participation in extracurricular events. Card access and camera surveillance are also growing in quantity and are necessary to keep the children and staff safe.

At Heights High School in Cleveland Heights, Ohio, the gym air handler is designed to respond to varying space loads and conditions by measuring relative humidity, temperature, and CO2 levels. Courtesy: Lisa Wilding, Karpinski EngineeringCSE: What are engineers doing to ensure schools—new and existing—meet the challenges associated with emerging technologies?

Dale-Derks: We must continue to learn and stay abreast of new technology and new methods of teaching. We also are encouraging schools to aggressively save energy so that the new technology can be accommodated.

Rader: Engineers must be conversant in the requirements of emerging technologies and provide the infrastructure to support not only current requirements but also potential changes. This means that we must be active in various education-related organizations as well as be close to our vendors and manufacturers.

CSE: Tell us about a recent project you’ve worked on that’s innovative, large-scale, or otherwise noteworthy.

Evan J. Hammersmith: We recently completed a 350,000-sq-ft high school in Ohio for a community that was eager to have a geothermal HVAC system. As we reviewed different system options, we found that the budget could not accommodate a full geothermal system and still meet the district’s other priorities. Our solution was to design an optimized hybrid geothermal system. This allowed us to size the borefield for the heating load. We supplemented it with a fluid cooler for heat rejection and a pair of condensing boilers for supplemental heat. The optimization came through using the fluid cooler and boilers to reject or inject heat into the condenser-water loop in the early spring and late fall to maintain ideal condenser-water temperatures for maximum heat pump efficiencies. The net result was that we were able to provide 90% of the benefits of a full geothermal system at 60% of the first cost.

Chien: Typically, schools are only 2 or 3 stories in height. Along with KPF and Studios Architects, we recently completed a new 11-story, 180,000-sq-ft, K-12 independent school (Collegiate School) in New York City. The school was to have LEED Silver certification. To achieve this, chilled beams, gas-fired condensing boilers, and ice storage were implemented. Other unique features include a stair pressurization system, smoke-control system, and a post-fire purge system—all requirements of a high-rise building in NYC.

Dale-Derks: For a high school in Missouri, we provided a layout and cost analysis for a geothermal-source heat pump as part of the central plant. The optimal geothermal well field would provide 25% to 33% of the central plant capacity and would require a geothermal field of 60 wells in a 5x12 matrix, covering an area of about 80x220 ft (wells spaced 20 ft apart). The premium cost of the installation would be about $480,000 and would save at least $23,000/year. This would offer a payback of about 20.8 years. Even though the payback is good, the school district opted to build more classroom space and forgo the geothermal portion of the central plant. Space is allowed for installation in the future if they desire to do so. The limited availability of geothermal well installers increased the cost and lengthened the payback.

<< First < Previous Page 1 Page 2 Next > Last >>

Product of the Year
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
40 Under Forty: Get Recognized
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
MEP Giants Program
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
November 2018
Emergency power requirements, salary survey results, lighting controls, fire pumps, healthcare facilities, and more
October 2018
Approaches to building engineering, 2018 Commissioning Giants, integrated project delivery, improving construction efficiency, an IPD primer, collaborative projects, NFPA 13 sprinkler systems.
September 2018
Power boiler control, Product of the Year, power generation,and integration and interoperability
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Data Center Design
Data centers, data closets, edge and cloud computing, co-location facilities, and similar topics are among the fastest-changing in the industry.
click me