Designing data center electrical distribution systems

Designing efficient and reliable data center electrical systems requires looking through the eyes of the electrical engineer—and the owner.


This article has been peer-reviewed.Learning objectives

  • Understand the preliminary considerations of designing data center electrical distribution systems.
  • Know how to design efficient data centers that can also accommodate growth.
  • Identify the codes and standards that apply to designing data center electrical distribution systems. 

Figure 1: Increasing demand for cloud services is putting a strain on server capacity. This photo shows data center servers while they are being configured and wired. All graphics courtesy: Jacobs EngineeringData centers are among the hottest developments in the technology world. The growing needs of the Internet of Things have forced the biggest players in the computing world to spend billions of dollars on new multi-megawatt data centers. This boom in data center construction is largely fueled by the growing use of cloud services, which has put a strain on server capacity (see Figure 1). Additionally, data centers are considered mission critical when their operation is of importance to organizations’ economic or functional needs. Even a disruption of a few seconds in the operation of certain types of mission critical data centers could cost millions of dollars.

This article explores data center design through the eyes of both the owner and the electrical engineer. It also discusses the key components of data centers and touches on the codes and standards that apply to data centers and their components.

Preliminary considerations

Data centers, many having servers as their main components, need electrical power to survive. It is, therefore, only natural that any talk about building a data center should begin with figuring out the electrical needs and how to satisfy those needs.

Capacity: Before deciding anything else, the owner must decide the capacity of the data center (in megawatts). In previous planning efforts, it was common to use W/sq ft. However, today it is more common to discuss kW per rack, which may vary from 5 to 60 kW. This power concentration per rack can also drive cooling system type and capacity, which must be planned for in the capacity. The owner also needs to consider future capacity.

Another big decision is to determine the level of redundancy. Reliability is very important for data centers, and disruptions are costly. But the cost of building a data center increases significantly with higher reliability. Therefore, the owner should decide where to draw the line, and determine how much risk is acceptable.

Auxiliary power:

<< First < Previous Page 1 Page 2 Page 3 Next > Last >>

Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
How to use IPD; 2017 Commissioning Giants; CFDs and harmonic mitigation; Eight steps to determine plumbing system requirements
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Power system design for high-performance buildings; mitigating arc flash hazards
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me