3-D Solar Cells Boost Efficiency, Reduce Size

A type of 3-D solar cell that captures nearly all of the light that strikes it could boost the efficiency of photovoltaic (PV) systems while reducing their size, weight and mechanical complexity. The new 3-D solar cells capture photons from sunlight using an array of miniature “tower” structures that resemble high-rise buildings in a city street grid.

06/01/2007


A type of 3-D solar cell that captures nearly all of the light that strikes it could boost the efficiency of photovoltaic (PV) systems while reducing their size, weight and mechanical complexity.

The new 3-D solar cells capture photons from sunlight using an array of miniature “tower” structures that resemble high-rise buildings in a city street grid. The cells could find near-term applications for powering spacecraft, and by enabling efficiency improvements in photovoltaic coating materials, could also change the way solar cells are designed for a broad range of applications.

“Our goal is to harvest every last photon that is available to our cells,” said Jud Ready, a senior research engineer in the Electro-Optical Systems Laboratory at the Georgia Tech Research Institute (GTRI). “By capturing more of the light in our 3-D structures, we can use much smaller photovoltaic arrays. On a satellite or other spacecraft, that would mean less weight and less space taken up with the PV system.”

The GTRI photovoltaic cells trap light between their tower structures, which are about 100 microns tall, 40 microns by 40 microns square, 10 microns apart—and built from arrays containing millions of vertically-aligned carbon nanotubes. Conventional flat solar cells reflect a significant portion of the light that strikes them, reducing the amount of energy they absorb.

Because the tower structures can trap and absorb light received from many different angles, the new cells remain efficient even when the sun is not directly overhead.

“The efficiency of our cells increases as the sunlight goes away from perpendicular, so we may not need mechanical arrays to rotate our cells,” Ready noted.

Intellectual Property Partners of Atlanta holds the rights to the 3-D solar cell design and is seeking partners to commercialize the technology.

Another commercialization path is being followed by an Ohio company, NewCyte, which is partnering with GTRI to use the 3-D approach for terrestrial solar cells. The Air Force Office of Scientific Research has awarded the company a Small Business Technology Transfer (STTR) grant to develop the technology.





Product of the Year
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
40 Under Forty: Get Recognized
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
MEP Giants Program
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
May 2018
40 Under 40 winners, fire and life safety, performance-based designs, and more
April 2018
VRFs, lighting controls, BIM coordination, and more
March 2018
Sizing water pipes, ASHRAE 90.1, recovering waste heat, and more
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me