# Matching servo amplifiers to brushless DC motors

04/01/1997

A servo system consists of a number of elements (see diagram). One aspect of the system integration process involves matching the servo amplifier to the brushless dc motor. This may seem as simple as selecting the amplifier and motor from the same manufacturer. Unfortunately, that isn't always possible or desirable.

Several factors will influence the way a brushless dc motor and a servo amplifier interact:

Motor winding type-- Brushless dc motors generally have a three-phase winding with a wye connection and produce trapezoidal torque characteristics. (Motors that produce sinusoidal torque format are commonly called 'ac servomotors.') If you've selected a brushless dc motor for an application, the servo amplifier should be designed for this type of motor and not an ac servomotor or a brush-type servomotor.

Commutation sensor configuration-- Most brushless dc motors use three hall effect sensors for commutation. These sensors read the motor's rotor position andenable the amplifier to switch the three winding phases on and off in the proper sequence to produce rotary motion. Confirm that the servo amplifier you're considering is designed to accept hall sensor feedback and can be configured for your motor's sensor spacing (60 or 120 degrees).

DC supply voltage-- Once a brushless dc motor that operates within your application's required speed range has been selected, calculate the supply voltage needed to power the motor at maximum speed and corresponding load using:

E = T L T + K E

where, E = supply voltage, T L = load torque, R = motor winding resistance, K T = motor torque constant, K E = motor voltage constant, N = motor speed at full load. Take as an example a 3/8 hp brushless dc motor (4-in. frame), with motor constants K T =75 oz-in./A, R=3.4 {OMEGA}, and K E =42 V/krpm. If we assume T L =150 oz-in. and the desired speed is 2,500 rpm, the above equation yields E=114 V for supply voltage.

Current limits-- Servo amplifiers have two adjustable current limits: continuous and peak. Continuous current limit should be at least as high as the rms current of the motor in your application. Peak current limit should be at least as high as the current drawn from the motor during peak loading conditions.

If current limits of the amplifier are higher than the ratings of the brushless dc motor, the amplifier's adjustment should be turned down accordingly in order to prevent overloading the motor.

Mode of operation-- Most servo amplifiers can be configured for three modes of operation: current (torque) mode, velocity mode, and open-loop mode. Current mode is generally used for positioning involving a digital motion controller and encoder feedback. Velocity mode is typically used where four-quadrant speed control is needed, such as an inclined conveyor with an overhauling load. Open-loop mode is generally used only during the initial set-up of the servo amp.

Motor-to-amp connections-- Connecting a brushless dc motor and servo amplifier made by different manufacturers can often be confusing. One reason is that no industry standard exists for labeling the three motor phases.

It's likely that the manufacturer of your servo amplifier has some experience in properly connecting the brushless dc motor you're using. The motor manufacturer is another possible source for the appropriate connection diagram. If a diagram is unavailable, you will have to experiment.

First, connect the hall sensors. After the sensor power connections are made, it's the relationship between the winding connections and sensor connections that matters--not how the three winding connections are actually made.

With the sensors connected, six possibleways exist for connecting the three winding leads. Four of these will cause the brushless dc motor to not operate at all. That leaves only two connections, one of which is correct. The incorrect connection will result in erratic operation of your motor.

When all of the above factors are evaluated, you should have a properly matched brushless dc servo system.

Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Exploring fire pumps and systems; Lighting energy codes; Salary survey; Changes to NFPA 20
How to use IPD; 2017 Commissioning Giants; CFDs and harmonic mitigation; Eight steps to determine plumbing system requirements
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Power system design for high-performance buildings; mitigating arc flash hazards
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Exploring fire pumps and systems; Lighting energy codes; Salary survey; Changes to NFPA 20
How to use IPD; 2017 Commissioning Giants; CFDs and harmonic mitigation; Eight steps to determine plumbing system requirements
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Power system design for high-performance buildings; mitigating arc flash hazards
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.