High standards for labs, research buildings: Electrical, power systems
Laboratory and research facilities are high-performance buildings, often with complex systems and exacting standards for engineers to meet. Electrical and power demands are unique, and must be carefully designed.
- Bryan Laginess, PE, LEED AP, Senior associate, Peter Basso Associates, Troy, Mich.
- Jeremy Lebowitz, PE, Vertical market leader, Rolf Jensen & Associates Inc., Framingham, Mass.
- Brian Rener, PE, LEED AP, Associate, SmithGroupJJR, Chicago
- Joshua Yacknowitz, PE, LEED AP, Associate principal, Arup, New York City
CSE: Describe some recent electrical/power system challenges you encountered when designing a new building or working in an existing building.
Rener: Certain research equipment may require either nontypical voltages such as 400 V or may require special electromagnetic interference (EMI) considerations. This may require the room to be built with shielding in the walls, or special lighting to reduce interference. In addition, we often get requests for “isolated grounding” from researchers, and this requires a careful discussion of what “isolated” means, as all grounding systems must be bonded together at some point.
CSE: How do you balance the need for reliable power with the desire for efficiency and sustainability?
Rener: There has been a greater push for efficient and suitable backup power systems, particularly with UPS and rotary systems. We are seeing efficiencies upwards of 98% to 99% in certain UPS types. The increased use of rotary systems is following the green trend to reduce or eliminate batteries due to their short life span, disposal concerns, and embodied carbon footprint.
CSE: What low- and medium-voltage power challenges have you overcome?
Rener: In some research facilities using high-performance computing, we are seeing increasing use of 400 V systems. This is great from an energy perspective, but provides some safety challenges to local users and maintenance staff relative to arc flash. Medium-voltage systems also require additional working space by code and for operations of certain types of gear. Space planning with the architect for medium-voltage gear in electrical rooms is critical.
CSE: Describe a recent laboratory/research facility project in which you specified standby or emergency power. What challenges did you face, and how did you overcome them?
Rener: There was a project whereby the standby power systems used both generators and rotary UPSs. There was a concern about coordinating the ramp-up time of the generator and the window of the rotary spin down. This required very careful requirements to be put in the specifications to ensure compatibility between the generator and the rotary UPS manufacturers. In addition, it is important to clearly delineate emergency from standby or optional loads as they have drastically different code requirements.
Do you have experience and expertise with the topics mentioned in this content? You should consider contributing to our WTWH Media editorial team and getting the recognition you and your company deserve. Click here to start this process.