Sustainability

Carbon footprint reduced by 68%, potable water use by over 125 million gallons/year

Designed for a peak load of 28,000 tons of cooling and 350 mmbtu/hr heating, the new systems replace a fossil fuel CHP plant with electric drive heat recovery chillers.
By Affiliated Engineers June 5, 2019
Illustration copyright Affiliated Engineers Inc.

As prime consultant and lead engineer of the Stanford Energy Systems Innovations (SESI), Affiliated Engineers analyzed energy production options, evaluated capital and operating costs, and assessed financial and energy risk through 2050. We then designed and directed implementation of SESI’s five major components – heat recovery/TES plant, OSHPD plant, new piping distribution, building conversions, and 100 MVA substation – through multiple jurisdictional authorities to operation within five years.

Illustration copyright Affiliated Engineers Inc.

Designed for a peak load of 28,000 tons of cooling and 350 mmbtu/hr heating, the new systems replace a fossil fuel CHP plant with electric drive heat recovery chillers that – along with standard chillers and gas-fired hot water generators – capitalize on daily heating and cooling overlap to meet 88% of the campus and hospital heating demand with recovered waste heat. 2Mgals of hot water and 10Mgals chilled water Thermal Energy Storage provide load shifting to off peak electric rates and accommodate high demand periods. SESI is 70% more efficient than the previous system.

Illustration copyright Affiliated Engineers Inc.

A new 100 MVA, 60kV:12.47kV substation allows flexible management of Stanford’s energy supply platform, which is 65% derived from renewable sources. The Central Energy Facility (CEF) administrative buildings incorporate natural ventilation, heating and cooling radiant floor and ceiling sail systems, and phase change materials; combined with the 175kW of installed PV on the CEF trellis these building achieve NZE operation.

Illustration copyright Affiliated Engineers Inc.

Conversion of 155 campus buildings from steam to hot water was accomplished using new heat exchanger stations at each building and over 22 miles of a direct buried, highly insulated, low loss hot water piping system conforming to European Standard EN253. SESI became operational in 2015 and has since exceeded its projected energy savings.

Illustration copyright Affiliated Engineers Inc.


This article originally appeared on Affiliated Engineers’ website. Affiliated Engineers is a CFE Media content partner. 


Affiliated Engineers