Why the time is right for integration

There are a number of factors that remove traditional integration barriers.

10/03/2013


Technology to monitor electrical systems from a computer-based graphical user interface, or front end, has existed for decades. But the cost to monitor these systems used to be high—often prohibitively so—while the features and benefits provided by the solution were often slim. Purchasing a single-vendor packaged solution was often required, creating lifecycle cost problems and owner frustrations. During the past decade, however, a number of factors have converged to remove the traditional barriers to integration. 

Changes made by electrical product manufacturers include:

  • Lower cost of embedding microprocessors with communication ports into equipment
  • Lower cost and complexity of application development
  • Continual increase in microprocessor power
  • Open, standards-based communication protocols that reduce development costs and increase immediate market demand for individual products. 

The combined result is that virtually any manufactured electrical product with a microprocessor can now be purchased with a standards-based open protocol network connection for a small additional cost and quite often includes a standard network connection. Furthermore, to differentiate their products, manufacturers are enhancing the application layer features provided by the software in their microprocessors. For example, it is nearly impossible to purchase a 3-phase power meter without a Modbus connection, and advanced features such as web-based user interfaces, onboard trend collection, alarm e-mails, and alternate protocols are available for small additional costs.

BAS system changes include:

  • The demand for standards-based open communication protocols has pushed all vendors to readily support them.
  • Modern BAS system architecture relies heavily on standard Ethernet networks and many BAS systems are implemented on owner Ethernet networks.
  • BAS software configuration/development environments now commonly provide tools to speed integration of third-party open protocols and non-HVAC equipment, such as meters and lighting controls.
  • Third-party enterprise applications that operate on top of a modern BAS are now more prevalent and can offer powerful specialty enhancements to a standard BAS.
  • As single-vendor proprietary BAS implementations become obsolete, BAS integration personnel have become better trained and have developed deep experience in integrating electrical systems. 

The result of these changes means that any modern BAS can easily be expanded to integrate with electrical and mechanical systems. Vendors and integrators are integrating these systems regularly. The applications that are available can deliver powerful new value from additional data. 

Owners and engineers may have been burned in the past by the cost, complexity, and disappointing results of electrical system integration attempts, and may now be reluctant to repeat a lesson learned the hard way. But progress by both electrical equipment and BAS systems has now passed the point where the cost/benefit is more strongly in favor of integration.


Mar is senior associate at Environmental Systems Design and a member of the Consulting-Specifying Engineer editorial advisory board. Knight is senior associate at Environmental Systems Design.



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
40 Under 40; Performance-based design; Clean agent fire suppression; NFPA 92; Future of commissioning; Successful project management principles
BIM coordination; MEP projects; NFPA 13; Data center Q&A; Networked lighting controls; 2017 Product of the Year finalists
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me