Variable frequency drive configuration, high-efficiency operation, and permanent magnet motors

VFD configuration for permanent magnet alternating current (PMAC) motors and other considerations can lead to optimal system performance, providing the desired energy savings in motor applications.


Figure 1 shows an example of motor efficiency in 3 hp fan application, with the NovaTorque PremiumPlus+R PMAC motor demonstrating a 5%-12% efficiency improvement over an induction motor. Courtesy: NovaTorquePermanent magnet alternating current (PMAC) motors are seeing increasing demand in variable-speed, high duty-cycle motion control applications due to their higher efficiencies and energy saving potential across different speed and torque ranges. Figure 1 shows an example of motor efficiency in a 3 hp fan application, with a high-efficiency PMAC motor demonstrating a 5%-12% efficiency improvement over an induction motor. A variable frequency drive (VFD) is needed to control both PMAC motors and induction motors in variable speed applications. VFD configuration for PMAC motors and other considerations can lead to optimal system performance, which can mean the difference between success and failure in achieving the desired energy savings in motor applications.

The term “PMAC” is used to designate permanent magnet motors that have sinusoidal back-EMF (back electromotive force) and can be efficiently driven by three-phase sine wave output VFDs. “Brushless dc” or “permanent magnet dc” motors are those with trapezoidal back-EMF driven by simple trapezoidal output drives. PMAC motors sometimes also are referred to as “brushless PM” or “ECPM” (electronically commutated permanent magnet).

Sensorless control

In the last few years, many of the major VFD manufacturers have introduced “sensorless” PMAC motor control capability to their low-cost drive models. Previously, use of permanent magnet motors was restricted to servo systems or specialized applications employing closed-loop feedback control. PM motors were effectively excluded from fan, pump, and other workhorse applications because of the cost and installation complexity of the associated closed-loop control systems. Now, with the addition of sensorless PMAC control algorithms to VFDs, the opportunity exists to reap the energy-saving benefits of permanent magnet motors in a wide range of variable-speed, high duty-cycle applications.

VFD configuration complexities

Configuration of VFDs for sensorless PMAC motor control is more complex than that for induction motors for two reasons:

1. Control algorithms for induction motors have been developed and refined over a couple of decades whereas sensorless PMAC control is still relatively new.

2. There is more variability among different vendors’ PMAC motors than there is for induction motors.

VFD configuration for induction motors has reached the maturity of a routine operation: Nameplate motor characteristics are entered into the VFD, an auto-tune procedure is typically run, and the induction motor is then ready for use. With PMAC motors, more motor data may be required, including information not provided on the motor nameplate. In addition, PMAC motor performance may vary considerably with different VFDs, and is dependent on the suitability of the specific sensorless PMAC control as well as proper entry of the appropriate parameter configuration into the VFD.

When selecting a VFD for PMAC motor operation, both the VFD and motor manufacturer should be consulted for technical advice. The PMAC motor manufacturer will likely have a list of recommended or “qualified” drives that have been verified to deliver the efficiency and robust performance that the PMAC motor has been designed to deliver. They may also have developed, optimized, and tested VFD configurations, made available as a “packaged solution” with both a PMAC motor and pre-programmed VFD.

PMAC motor characteristics

In addition to standard motor nameplate characteristics shared with induction motors (rated power, rated speed, rated frequency, full load amps, and nominal voltage), the PMAC motor characteristics of winding inductance, winding resistance, and motor back-EMF must be properly configured in the VFD. These values are critical for successful motor operation.

It should be noted that the sophistication of VFD auto-configuration for PMAC motors is steadily improving. Several manufacturers now include auto-tuning procedures that remove some requirements for manual configuration of VFD parameters. However, in situations where the PMAC motor and VFD are not provided as a packaged solution, it is necessary to know the characteristics of the PMAC motor, and understand the specific control algorithms offered by the VFD. This information is required to determine if the motor-drive combination is suitable for the performance goals of the motion control application.

Motor winding inductance

PMAC motor designs fall into two primary categories: surface mount magnet (SPM) designs and interior permanent magnet (IPM) designs. IPM motors exhibit winding inductance that varies with rotor angle. Maximum motor winding inductance occurs at the quadrature-axis of rotor position and is termed q-axis inductance (Lq); minimum winding inductance occurs at the direct-axis and is termed d-axis inductance (Ld).

Figure 2 shows the winding inductance of an example IPM motor with 20% saliency. Magnetic saliency is the variance of winding inductance with rotor angle. Courtesy: NovaTorqueSPM motors have winding inductance that is nearly invariant with rotor position (Ld ≈ Lq).

The variance of winding inductance with rotor angle is termed “magnetic saliency” and may be represented as a percentage change ((Lq – Ld) / Ld) * 100.0. SPM motors have negligible saliency; IPM motors have saliency from a few percent to 100% or more depending on the design of the interior permanent magnet motor. Figure 2 shows the winding inductance of an example IPM motor with 20% saliency.

VFD control strategies differ significantly for IPM and SPM motors, particularly in the choice of suitable motor start algorithms, and in the optimization of motor speed capability in the constant power region. Figure 3 shows the regions of motor operation. For either IPM or SPM motors, an accurate configuration of VFD inductance parameters is essential for achieving optimum torque output and motor efficiency.

Motor start

Figure 3 shows the regions of motor operation. For either IPM or SPM motors, an accurate configuration of VFD inductance parameters is essential for achieving optimum torque output and motor efficiency. Courtesy: NovaTorqueMagnetic pole position must be determined in a PMAC motor before rotation can begin. The PMAC-capable VFD may provide the ability to choose between different motor start algorithms, each having a required level of magnetic saliency. An IPM motor, with a sufficient level of saliency, may allow the VFD to employ a “high-frequency injection” method where a high-frequency voltage signal is applied to the motor for a short period. The resulting current amplitude, which depends on rotor position, can be measured and used to accurately determine rotor position without shaft rotation.

SPM motors do not have magnetic saliency and require alternate methods of initial rotor position estimation; dc magnetization or similar methods may be employed to force the rotor into a known position. The acceptability of initial pole-locating rotation needs to be assessed for the intended motion control application. For most fan and pump applications, a small initial reverse rotation is likely acceptable; for other applications, such as conveyance, an initial motion in the reverse direction might not be acceptable.

Constant power region phase advance

<< First < Previous Page 1 Page 2 Next > Last >>

Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me