Using withstand current rating to improve electrical system designs

11/08/2013


Rating transfer switches

Figure 2: In this drawing, the ATS is shown in the emergency position and is connected to the genset. During a specific breaker test, the ATS is transferred to the test power source into fault current, which is created by connecting all three phases of thTransfer switch WCRs are typically listed in the specification sheets. The four main types of WCR are specific breaker, any breaker, short time, and fuses. 

Specific breaker: Specific breaker ratings are generally popular on larger installations where a higher level of planning is required (see Figure 2). An ATS with a specific breaker rating (in accordance with UL 1008) must pass the short-circuit test while being protected by that specific breaker. There are numerous specific breaker choices for particular transfer switches. When using a specific breaker rating, it is advisable to select the breaker interrupt and I2t ratings to exceed the transfer switch withstand and I2t, especially with molded-case circuit breakers. As molded-case circuit breakers age, the trip characteristics may change, causing the tripping time to slow and exposing the ATS to energy above the WCR. 

For the specific breaker rating, tests are performed with a specific molded-case circuit breaker between the ATS and the test source. The fault current is applied for the time it takes the selected circuit breaker to clear the specified test current. This time is used to determine which specific breakers may be used. Any breaker that meets the fault current rating requirement and can clear the fault in the same time or more quickly than the tested breaker can have this noted on the transfer switch ratings decal. 

Any breaker (or umbrella breaker): An ATS that passes the any breaker test (in accordance with UL 1008) can withstand a fault of a given magnitude for 3 cycles (or 1.5 cycles for transfer switches with a rating smaller than 400 A with an any-breaker-rating of 10,000 A or lower). This allows an ATS to be used with any circuit breaker that has an instantaneous trip function. Using the umbrella of the any breaker rating has simplified ordering and installing ATSs and circuit breakers. This makes them popular on smaller installations where planning is generally not as detailed. 

For transfer switches rated above 400 A or for those used on circuits with fault currents greater than 10 kA, the short circuit test requires the fault current be applied for a minimum of 50 msec (3 electrical cycles) at a specific power factor. Passing this test allows the manufacturer to mark the switch for use with any manufacturer’s circuit breaker within its rating. This is sometimes referred to as an umbrella rating and gives the designer more flexibility in installation. 

Short time: ATS units using these ratings are generally over-protected and could be properly protected with a smaller WCR with one of the other methods. This is because they are protected by upstream breakers and can withstand short-circuit currents for longer periods as they have a short-time—as opposed to instantaneous-trip—capability. This also makes them popular with engineers, as they are easier to specify, although there is generally a higher cost implication. In 2007, UL amended the 1008 standard to account for short time ratings for transfer switches that are protected by upstream breakers and that have a short time delay of 3 to 30 cycles (50 msec to 500 msec, in a 60-Hz environment). 

Fuses: The final type of protection detailed by UL 1008 is also the most simple: current-limiting fuses. Current-limiting fuses limit the current that passes through them during a fault and ensures the protection of downstream system components from catastrophic failure because they typically clear faults within a half cycle. Current-limiting fuses allow the ATS to be assigned a higher WCR because of the extremely short clearing time. 

The bigger picture

It’s important to not lose sight of how the ATS fits into the overall electrical system. The power system’s X/R ratio, in particular, must be considered. UL 1008-rated ATS units are tested on systems with specific X/R ratios and with circuit breakers or current-limiting fuses deployed upstream. Current-limiting fuses deployed upstream can significantly reduce the duration of a short-circuit current compared with systems that use circuit breakers. This is important because the peak available current at the transfer switch must be understood so the correct ATS can be selected to meet continuous and symmetrical current requirements.

For example, a 200 A transfer switch tested at 22,000 A (symmetrical) at an X/R ratio of 4.9 will withstand 48,026 A (instantaneous peak). However, if this switch were applied in a circuit with an X/R ratio of 6.17, it would be subjected to 50,204 A (peak instantaneous). This may seem like a relatively small jump, but the consequences could be severe: the switch may fail and wider damage may ensue. As with planning backup power systems, attention to detail is crucial. While the transfer switch may seem inconsequential, its effect on the overall system cannot be underestimated.


Allen Frederick is a senior staff engineer with Kohler Power Systems, Americas. He has been with the company since 2008 and specializes in switchgear project management, electric utility distribution system engineering and planning, and control system engineering. Frederick has a BS in electrical engineering from the University of Wisconsin, Platteville.

Steven Ennesser is an electrical project engineer with Kohler Power Systems, Americas. He has been with the company since 2012 and specializes in automatic transfer switches. Ennesser has a BS in electrical engineering from the Milwaukee School of Engineering.


<< First < Previous 1 2 Next > Last >>

No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2014 Product of the Year finalists: Vote now; Boiler systems; Indirect cooling; Integrating lighting, HVAC
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.