Using the AEDG in large hospitals

06/14/2013


Graphics packages

  • Graphics are required for operator use and understanding of system performance. The adage “a picture is worth a thousand words” could never be more applicable in this case
  • Consolidating related system performance information on graphic screens enhance operator understanding of where energy is used, and what is setting the requirement for increasing the output of plant equipment. 

Exhaust air

  • Figure 3: In this mixed-air section configuration, use of dual (opposing) outside air entrances with air blenders (in cold climates) to eliminate stratification and minimize the use of preheat coils. Courtesy: Engineering Economics Inc.Less exhaust air can be achieved through better kitchen layouts with smaller kitchen hoods, no isolation exhaust when isolation rooms are not in use, and separate AHU exhaust air damper control.
  • Less exhaust requires less minimum outside air, less heating, and less cooling, with the more significant benefits to be obtained in high humidity areas where dehumidification requirements are prevalent.
  • Closer compliance with actual requirements, in lieu of adding a little extra to make sure. To this end, we highly recommend larger variable speed drive exhaust fans with static pressure control, in lieu of fixed speed, constant volume exhaust fans. Exhaust air requirements can be more accurately balanced, and quantities are ensured by varying fan speeds to exactly what is needed at the inlet grills, not just a proportional balance of fixed exhaust air quantities. 

Piping

  • Less fittings, less devices
  • Wyes in lieu of tees
  • Full port ball or butterfly valves
  • Two-way valves, more diversity. 

Humidification

  • Less humidification—this is often overdone, and not required or desired. Refer to local codes to determine the amount of relative humidity required in the winter.
  • Smaller zones versus entire AHU applications.
  • Better control, and shutoff when not required. 

De-humidification

  • Less intake of humid outside air
  • Desiccant wheels in lieu of sub-cooling
  • Heat recovery. 

Heat recovery

  • Heat recovery is usually disappointing—extra air side static pressure losses, contamination of heat transfer surfaces, performance short of expectations, and/or no demand for recovered heat (hospitals really need more cooling or cooling enhancement in very hot or humid climates).
  • If exhaust air streams are minimized (the first step), the impact is either too small or too contaminated to justify heat recovery. The goal is to minimize exhaust air and then apply heat recovery, if at all.
  • Heat recovery can only be justified in very cold or very hot climates. Mild weather locations, or where the total number of hours when heat recovery will actually pay, may be limited in comparison to the total number of operating hours. 

Plumbing

  • Right-sizing of domestic hot water heating—the requirements are much less than the number of fixtures in a hospital would lead one to believe. A hospital has many fixtures, but few are used.
  • No booster pumps. Excessive use of booster pumps has been a major issue for lower multi-story buildings.
  • Centralized domestic hot water recirculation and balancing of recirculation loops. Better flow, less waste at the faucet.
  • Mixing valves with good check valves. Integral check valves have been less than satisfactory more often than not, with excessive hot and cold domestic water use to compensate. 

Building envelope

The building envelope and orientation of the building have significant impact on HVAC design, comfort, and operating practices. The orientation of large hospitals on the site is more often limited by the available site, parking, and other factors. However, the building envelope can be optimized by:

  • Eliminating thermal bridging. Continuous wall insulation between the structure and the exterior skin, and window frames, and more specifically, window sills must be thermally broken.
  • Providing a complete vapor barrier, with emphasis on the integrity of window and door openings, and the junctions of the wall assemblies with the floors and roof assemblies.
  • Less glass and better shading.
  • Exterior doors that limit infiltration. 

Lighting

  • Less lighting, better located. General, overhead lighting versus task lighting has been a continual battle.
  • More efficient fixtures and lamps. Fewer watts, more lumens per watt, and better light quality to enhance medical diagnostic procedures.
  • Lighting controls, so lights are off when not needed. This has been challenging, with the lack of light when needed. Occupancy sensors do not always sense occupancy, particularly if there is little motion in the room. The approach may be some combination of daylighting, motion sensors, time of day control, or local switching in smaller zones.


No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Smoke control: Designing for proper ventilation; Smart Grid Standard 201P; Commissioning HVAC systems; Boilers and boiler systems
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
Cannon Design’s blog is a place for the many voices of the firm to share thoughts and news related to current projects...
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.