Tips to design multifamily and mixed-use buildings

Multifamily dwellings and mixed-use buildings are becoming more prevalent. Some best practices and tips are offered for engineering systems in these residential buildings.

07/26/2017


Respondents

Respondents:

  • Brian Berg, PE, LEED AP, CEM, Associate Principal, Glumac, Irvine, Calif.
  • David Crutchfield, PE, Principal, RMF Engineering, Charleston, S.C.
  • Kieran Healy, PE, Mechanical Engineer, CCJM, Chicago
  • Lui Tai, PE, Technical Services Director, JENSEN HUGHES, Toronto
  • Robert J. Voth, Executive Vice President, Bala Consulting Engineers, King of Prussia, Pa.

CSE: What’s the No. 1 trend you see today in the design of multifamily dwellings and mixed-use buildings?

Brian Berg: We’re seeing a lot of large complexes taking the “mixed” part of mixed-use to the extreme. Retail, restaurants, offices, hotel, residential, grocery stores, and parking are typically being built as part of one large complex. Oftentimes, this is being done on a multilevel podium with tower(s) stacked on top. And sometimes all those uses are in one tower. Parking is either all underground or a combination of underground and wrap-style lots where residential units line up around the aboveground parking. These are all being built in either dense urban areas or less dense burgeoning areas near an abundance of public transportation options.

David Crutchfield: One interesting trend we are seeing is a desire for mixed-use spaces to support lifestyle activities. For example, occupants often want an in-house gym or space for outdoor activities. We’re also seeing an increasing number of people working or studying from home, so they need flexible mixed-use spaces that can accommodate their lifestyle. Overall, this indicates a larger movement toward people becoming increasingly reliant on their homes or dorms to cater to all their needs underneath one roof.

Kieran Healy: A growing trend we have seen within the Chicago housing market is the retrofitting of central cooling systems into low- and mid-rise multifamily buildings that were built in the 1980s or earlier. To stay competitive with new construction, property managers have needed to provide cooling in buildings that were often only heated with perimeter fin tubes or in-slab radiant flooring. Many owners have opted for water-source heat pumps or variable refrigerant flow (VRF) systems to reduce the overall energy required to both heat and cool the building. These systems are unique in that a vertically tiered renovation approach can be used to keep the majority of units occupied while others are being renovated.

Lu Tai: In Ontario, the recent trend is to install automatic sprinkler protection in multifamily-dwelling units, such as retirement and care homes. After a few high-profile incidents in retirement and care homes from the last decade where there were reported fatalities, the fire code is mandating that these types of buildings be reviewed to comply with the retrofit code. Within the retrofit code, there is the mandatory requirement that all such multifamily homes be retrofitted with automatic sprinklers by the year 2019.

Robert J. Voth: Amenities remain a highly attractive part of the development as competition for occupants is intensifying in markets outside of New York City. Additionally, mixed-use developments are moving to a smaller-scale, very efficient build model.

CSE: What other trends should engineers be on the lookout regarding such projects in the near future (1 to 3 years)?Bala engineers provided services for The Bridge in Philadelphia, a highly efficient, 17-story building featuring 146 apartments. It incorporated a VRF system and central domestic hot-water generation to obtain LEED certification. The team worked to include the build partner from the beginning of the project to help boost the efficiency of the design and build process; time to market was less than 20 months. Courtesy: Rendering by Volley

Healy: Developers are becoming increasingly competitive with each other as they strive to capture and maintain residents in mixed-used facilities. Be on the lookout for more luxury amenities, such as full fitness and yoga studios, conference centers with commercial kitchens, rooftop pools and spas, and lobby bars and coffee shops. Mechanical, electrical, and plumbing (MEP) systems have to be sized to allow that flexibility, supporting longer-duration occupancy of common areas versus a transient occupancy where residents are only passing through from interior to exterior and back.

Crutchfield: The infrastructure to support personal devices, such as cell phones, tablets, and laptops, for people who work from home have driven a need for higher levels of cabling and power in mixed-use buildings. Connectivity solutions, such as USB chargers built into receptacles and information technology (IT) wiring ready for the next level of bandwidth, are becoming standard and critical to building a marketable project.

Tai: The use of alternative solutions to resolve issues that do not match the prescriptive requirements of the building code. This is particularly true for new builds, but can also apply to existing facilities. In new construction, alternative solutions allow more flexible designs that are not envisioned by the prescriptive code; and in existing facilities, they allow less destructive work to take place.

Voth: Suburban markets centered around multi-use “villages” will remain a strong market. Engineering firms will need to understand the 4-story stick-built-over-concrete development model to remain competitive.

Berg: These complexes seem to be getting bigger and more prevalent. My office is in Southern California. The state has a housing shortage right now, so housing is popping up all over the place with multifamily mixed-use projects as the developments of choice. This is what we see locally, but we have projects throughout the state and country of similar types.

CSE: Please describe a recent project you’ve worked on—share details about the project including location, systems engineered, team involved, etc.

Tai: Recently, we took on a project to design and install automatic sprinklers into 75 existing retirement-home facilities across Canada (for one owner). Because it is a retrofit project, the level of difficulty was increased. We had to come up with innovative engineering methods to do the work that would cause only minimal impact to existing residents and deal with possible asbestos issues, disease outbreak, and inadequate water supplies. To avoid costly errors and delays, we worked with a procurement company to schedule and administer the work, completing the $55 million project within 18 months to the satisfaction of the owner.

Voth: The Bridge in Philadelphia is an efficient 17-story building with 146 apartments. The project used a VRF system and central domestic hot-water generation to obtain U.S. Green Building Council LEED certification. The team included the build partner from the beginning of the project, which led to a very efficient design and build process. Time to market was less than 20 months.

Healy: The Fannie Emanuel Senior Apartments is a 20-story senior-living facility with 181 single-bedroom apartments owned by the Chicago Housing Authority (CHA) in Chicago’s West Garfield Park neighborhood. As part of a $61 million gut-rehab project, we worked with Holabird & Root as the architect and Old Veteran Construction as construction manager to completely redevelop the 132,000-sq-ft building on a 2.5-acre site originally constructed in 1963. As the MEP/fire protection (MEP/FP) engineer for the project, we selected systems to increase comfort and accessibility for senior citizens and brought fire alarm and sprinkler systems up to current code. HVAC systems included a 276-ton air-cooled heat pump VRF system with ducted evaporators, condensing boilers with panel radiators as supplemental heat, dedicated outside-air system (DOAS) with energy recovery for corridor make-up air and toilet exhaust, and demand-controlled ventilation (DCV) system for 1st-floor offices and community spaces. Plumbing systems included new condensing-water heaters, intelligent domestic booster pump, and low-flow plumbing fixtures. Electrical upgrades included new 4,000-A switchgear and metered distribution, video surveillance and IT infrastructure, LED lighting fixtures, and a 350-kW generator for life safety and standby loads.

Crutchfield: RMF Engineering was the MEP engineer for the Coastal Carolina University Student Housing project in Conway, S.C. The complex consisted of 333,100 sq ft and 1,270 beds in a series of stand-alone buildings. This project used DOAS to provide code-required ventilation air and building make-up air. Fan coils with heating and cooling coils are provided in the rooms to allow for individual room climate control. In addition to the dorm rooms, community spaces were provided on each floor at a ratio of two large community spaces, one quiet student room, and one living room per 35 residences. Wireless and wired internet connectivity, access control and security systems, high-efficiency laundry machines, a convenience store and student cooking kitchen, custodial and maintenance storage, apartments for live-in staff, administrative offices, and reception and meeting space were all included in the buildings. Outdoor spaces incorporated sand volleyball courts, a covered pavilion complete with a fireplace, a grilling area, and plenty of courtyard green space.

Berg: We’re working on a high-rise project in downtown Sacramento, Calif., that’s wrapping up construction at the moment. The project has two levels of underground parking; four podium levels of retail, restaurants, and offices; and a 12-story tower with hotel and residential units on top of the podium. We selected a condenser-water system to serve multiple types of water-cooled HVAC equipment to suit the occupancy use. The design team is located in southern California, with the owner and contractors being local Sacramento firms.


<< First < Previous Page 1 Page 2 Next > Last >>

Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me