The benefits of using water-source heat pumps

Water-source heat pumps prove to be more energy-efficient than alternative systems for commercial buildings.


Learning Objectives:

  • Analyze water-source heat pumps and compare them to alternative systems.
  • Examine how water-source heat pumps can reduce building energy consumption.
  • Implement a water-source heat pump system to meet simultaneous heating and cooling demand.

Figure 1: As reported by the U.S. Department of Energy, a complete adoption of these energy codes would have resulted in approximately a 50% reduction in normalized energy use between 1975 and 2012. This study, conducted by the Pacific Northwest NationalThe first commercial energy code was promulgated in 1975 with the ASHRAE Standard 90-1975: Energy Conservation in New Building Design. Since then, subsequent efforts have led to more stringent energy efficiency standards, as shown in Figure 1.

A complete and uniform adoption of these energy codes would have resulted in approximately a 50% reduction in normalized energy use between 1975 and 2012. In reality, total energy consumption per square foot in commercial buildings has decreased from 114 kBtu/sq ft in 1979 to 79.9 kBtu/sq ft in 2012—a 30% decrease.

While this is a significant achievement, adoption and enforcement of standards by different states has not been uniform, and buildings continue to account for a large percentage of energy consumption in the U.S. According to the U.S. Energy Information Administration, commercial buildings consumed 7 quadrillion Btus of energy. Further, HVAC accounts for 44% of the commercial building energy demand, as shown in Figure 2. This includes space heating, ventilation, and cooling, but excludes refrigeration.

Figure 2: HVAC accounts for 44% of total energy consumption in commercial buildings. Image courtesy: U.S. Energy Information Administration, 2012 Commercial Buildings Energy Consumption Survey. Courtesy: ClimateMaster IncCommercial heat pumps

A heat pump is a refrigeration circuit that can cool spaces during warm weather and heat spaces during cool weather. With a heat pump, you can cool or heat a space by only using electricity. By not burning fuel for heating, as in a traditional central furnace, a flammability risk is eliminated.

Commercially available heat pumps can be categorized into two broad types:

  • An air-source or air-cooled heat pump
  • A water-source heat pump (WSHP).

An air-source or air-cooled heat pump is a type of heat pump that operates by rejecting heat to outside air during the summer or by absorbing heat from outside air during the winter. A WSHP is a type of heat pump that operates by rejecting heat to a water-pipe system (or water loop) during the summer or by absorbing heat from the same water loop during the winter. If multiple units of WSHPs are installed, they can all be serviced by a common water-loop system (or header).

Table 1: ASHRAE 90.1 heat pump efficiency requirements in cooling mode. This table derived from ASHRAE 90.1–2013, shows that, under like conditions, the water-source heat pump meets the highest EER requirement in cooling mode. Courtesy: ClimateMaster Inc.Advantages of water-source heat pumps

For WSHPs, since the heat is transferred via a heat exchanger into a pipe that is carrying water, the operation is quieter and the system footprint is smaller since water is more efficient at carrying away heat than air. In an air-source system, the limiting heat-transfer coefficient is on the air side and typical forced convection air-side heat-transfer coefficients is in the range of 25 to 250 W/m2 K. In contrast, the forced convection heat-transfer coefficient on the water side is between 50 to 20,000 W/m2 K. This makes WSHP equipment more efficient and smaller in size than air-source heat pumps.

Traditional air source units can require each air handling unit to have a separate condensing unit. For a large, multi-unit system, which is common in a commercial building, multiple condensing units would be needed that are not only noisy but also present a challenge to install since they require a lot of free space. With a multi-unit WSHP installation, heat exchange can be accomplished with a single, central evaporative cooling tower or dry cooler located on the ground or the rooftop. The WSHP units can be placed in dropped ceilings or hidden away from occupied spaces in mechanical rooms or utility closets. Placing the units in ceilings, near to the point of use, also results in less ductwork and less fan-energy consumption. Fan-energy consumption can be among the largest energy components of an HVAC system, and a good overall system design will attempt to minimize it.

Table 2: ASHRAE 90.1 heat pump efficiency requirements in heating mode. This table derived from ASHRAE 90.1 – 2013, shows that, under like conditions, the water source heat pump meets the highest COP requirement in heating mode. Courtesy: ClimateMaster InWSHPs also offer some of the highest efficiencies in the HVAC industry. ASHRAE sets the minimum efficiency requirements for WSHPs to be higher than traditional air-cooled heat pumps and VRF systems. Tables 1 and 2 show efficiency values for the most directly comparable units and is derived from ASHRAE 90.1-2013: Energy Standard for Buildings Except Low-Rise Residential Buildings. This comparison shows that WSHPs meet the highest minimum energy efficiency ratio (EER) and coefficient of performance (COP) requirements.

WSHPs also are more efficient at heating when compared with packaged furnace air conditioners. In a furnace unit, the maximum efficiency for heating by burning natural gas is about 95% (for a COP of 0.95); electrical heat is 100% (COP = 1.0). With a water-source heat pump in heating mode, not only is the thermal energy from the water loop being extracted and used, but also the heat of compression in the refrigerant circuit is captured and used as a source of heating. Due to this capability of extracting heat from a heat source (i.e., the water loop) and using the heat of compression, the WSHP can easily provide 4 to 6 units of heating for every unit of energy consumed. Clearly, this is a more efficient system.

<< First < Previous 1 2 Next > Last >>

Anonymous , 10/04/16 11:27 AM:

There are also ground source DX heat pumps
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
40 Under 40; Performance-based design; Clean agent fire suppression; NFPA 92; Future of commissioning; Successful project management principles
BIM coordination; MEP projects; NFPA 13; Data center Q&A; Networked lighting controls; 2017 Product of the Year finalists
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me