Study: Bilevel occupancy sensors save energy

A recent CLTC study demonstrates major energy savings for bilevel occupancy sensors.

04/14/2009


Data released from a California Lighting Technology Center (CLTC) study show that bilevel occupancy sensors can achieve energy savings in many buildings. The Lighting Controls Assn. recently released the results of this study.

 

While the basic ON/OFF switch is not considered an energy-saving lighting control, it can be if at least two switches are used to control lighting in a space that is configured on two lighting circuits, giving the user a choice of two levels of light output.


Alternate rows, fixtures, or lamps can be switched, offering a choice of 50% and 100% light output. Or the center lamps can be switched separately from the outer lamps in three-lamp fixtures, offering a choice of 33%, 66%, and 100% light output. In one study by ADM Associates, the latter option was demonstrated to produce 22% energy savings in private offices.


At least one-half of the energy codes in the United States are based on the International Energy Conservation Code (IECC), which requires light level reduction controls such as multilevel switching or dimming in enclosed spaces such as private offices.


Occupancy sensors are just as simple-a switch married with a sensor to enable automatic switching based on whether the sensor detects the presence or absence of people. Occupancy sensing is a reliable method for generating energy savings: According to the Advanced Lighting Guidelines, occupancy sensors in private offices can produce up to 45% energy savings.





Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me