Six strategies to mitigate arc flash incidents

From analysis to equipment; you can reduce the exposure to a dangerous event

11/18/2013


Figure 1: Arc flash remains a dangerous plant floor event, and strategies to mitigate such an event require constant attention. Courtesy: EatonArc flashes—the fiery explosions that can result from short circuits in high-power electrical devices— kill workers in the U.S. every year and permanently injure many more.

They can also wreak financial havoc in the form of fines, lawsuits, and damage to expensive equipment.

Given the dangers they pose, arc flash events merit serious attention from engineering professionals. Here are six of the most effective strategies for reducing the frequency, severity, and harmfulness of arc flash incidents. 

1. Perform a hazard analysis

Every arc flash mitigation program should begin with a hazard analysis aimed at calculating how much energy an arc flash could release at various points along the power chain. Accuracy is essential with such measurements, so plant managers who lack direct and extensive experience with arc flash incident energy assessment should always seek assistance from a qualified power systems engineer.

To ensure employees are always aware of potential arc flash hazards, companies should place warning labels on any piece of electrical equipment that poses an arc flash risk. They should also mark arc flash hazard zones on the floor, so workers not wearing appropriate personal protective equipment (PPE) can clearly see how far away from electrical equipment they must stand to avoid serious injury.

Note that the NFPA 70E standard explicitly requires employers to post signage notifying employees of potential arc flash dangers. Organizations that ignore this directive dramatically increase their chances of paying serious fines and losing expensive lawsuits after arc flash incidents.

2. Reduce available fault current. 

Though not applicable to environments protected by fuses and current-limiting breakers, facilities using non-current limiting breakers (NCLBs) can reduce the amount of incident energy released during arc flashes by reducing the amount of available fault current. The following three strategies can help plants with NCLBs significantly reduce available fault current.

Operate with an open tie during maintenance. When maintaining dual electrical sources, current limiting devices above current values can increase available fault current and reduce incident energy. Sometimes, however, opening the tie between dual power feeds during maintenance procedures reduces arc flash dangers by cutting available fault current in half. Of course, opening ties during maintenance also temporarily renders your power scheme less redundant, exposing equipment to heightened risk of failure. Given the devastating human and financial toll arc flashes can take, most organizations consider that a trade-off well worth making.

Employ high-resistance grounding. During ground faults, high-resistance grounding (HRG) systems provide a path for ground current via a resistance that limits current magnitude—dramatically reducing the size of line-to-ground faults and associated arc flashes. HRG can be used on systems that service only three-phase loads. The U.S. National Electrical Code prohibits using HRG on distribution systems serving loads that are connected line-to-neutral.

Use current limiting reactors. Current-limiting reactors act as a bottleneck on electrical flows, restricting current during faults. For example, low-voltage motor control centers can be supplied with three single-phase reactors that limit available short circuit current, resulting in smaller energy releases when faults occur. 

3. Shorten clearing time

Just as smaller arc flashes release less energy, shorter ones do as well. To shorten arc flash events by decreasing fault clearance times, you can:

  • Utilize zone selective interlocking. Zone selective interlocking (ZSI) is a protection scheme that uses an “inhibit” signal transmitted from downstream breakers that see a fault to the next breaker upstream. The upstream breaker sees both the fault current and the inhibit signal and therefore delays tripping, allowing the downstream breaker to clear the fault. Should a fault occur between the downstream and upstream breaker, however, the downstream feeder doesn’t see the fault or send an inhibit signal to the upstream breaker. That causes the upstream breaker to bypass any intentional time delay settings, significantly reducing arc flash incident energy.
  • Implement a bus differential scheme. These are coordinated zones of protection within an electrical system. When a fault occurs within a given zone of protection (i.e., between the main and feeder breakers), protective devices trip instantaneously, limiting arc flash durations while also confining arc flash damage to specific portions of your infrastructure. Bus differential systems are typically faster and more sensitive than ZSI, but require additional current transformers and relaying equipment. This generally makes them harder to implement and more expensive.
  • Deploy an Arcflash Reduction Maintenance System. An ARMS shortens faults by bypassing all time delays in the trip circuit any time current exceeds a preset maximum. That enables faults to clear even faster than a circuit breaker’s “instantaneous” function makes possible. Technicians must manually enable ARMS circuits before doing maintenance work and then disable them when that work is complete, employing familiar lockout/tagout procedures.  

4. Adopt remote operation

Executing potentially dangerous procedures remotely can help protect personnel from injuries. Here are two ways to limit maintenance operations performed in range of arc flash events:

  • Install remote monitoring, control, and diagnostics software. Today’s power management systems equip administrators with the ability to perform many administrative tasks remotely. They also equip companies to remotely de-energize electrical equipment before staff members come into contact with it.
  • Employ remote racking devices. Traditionally, technicians have had to stand close to equipment with live, electrical connections when racking and unracking breakers. Remote racking devices enable operators to perform these extremely dangerous tasks from a safe distance.  

5. Predict and prevent faults

One of the most effective ways to prevent arc flashes is to anticipate and eliminate the conditions that cause them. The following three solutions help spot potential arc flash dangers before they have a chance to do harm and keep personnel safely away from live connections.

  • Monitor insulation integrity. Deteriorating insulation is the leading cause of arc-producing electrical failures. Identifying and repairing compromised insulation before it fails can help avert arc flash explosions. Predictive maintenance systems provide early warning of insulation failure in medium-voltage switchgear, substations, generators, transformers, and motors.
  • Monitor pressure junctions. Most electrical equipment contains pressure junctions, such as shipping splits, load lugs, and compression fittings. Over time, vibration and thermal cycling can loosen these connections. When current flows through a loosened connection, it can cause overheating and eventually produce an arc flash. Using non-contact thermal sensors called pyrometers, however, plants can monitor pressure junctions continuously and receive advance notification of loose connections before they become so loose that they create an arc flash explosion.
  • Use infrared (IR) windows. Using contactless IR thermography technology, IR windows enable technicians to perform IR scans without removing switchgear side panels, lessening the likelihood of arc flash events caused by accidental contact with live bus.  

6. Redirect blast energy

Equipment that directs arc flash energy away from personnel is called “arc resistant.” Arc resistant switchgear, for example, utilizes sealed joints, top-mounted pressure relief vents, and reinforced hinges to contain the energy and heat released by arc flashes and channel them via ducts to an unoccupied area inside or outside the building.

When all else fails, arc-resistant switchgear offers vulnerable employees a critical last line of defense from the explosive power of arc flash incidents. However, its protective qualities are effective only when equipment doors are closed, so companies should train their technicians to fasten doors securely during normal operation.

Arc flash events can cause serious harm, ranging from disabling or fatal injuries to heavy fines and financially ruinous lawsuits. Though no combination of countermeasures can totally eliminate them, utilizing the solutions and strategies discussed in this article can help organizations make arc flash incidents significantly less likely to happen and less harmful when they do. 

David Loucks is manager, power solutions & advanced systems for Eaton.

- Click here for a webcast on Arc Flash University: Safe Use of Electrical Devices.

See more articles on arc flash below.



Patrick , , 12/06/13 05:45 AM:

Not mentioned in the article is the advent of SAW based temperature sensors that can be attached to points of interest and remotely scanned
24/7 and in real-time.

For switchgear cabinets this scores heavily over thermographic monitoring in cheapness and ease of use.
JAMES , GA, United States, 12/06/13 07:59 AM:

THE ARTICLE IS GOOD BUT NO PLACE DOES IT TALK ABOUT A TRU PREVENTIVE MAINTENCE PROGRAM WITH HARD TIMES IE 6 MONTHS 12 MONTHS ,WE HAVE CUSTOMERS THAT CHECK AND TIGHTEN EVERY SHUTDOWN AT VACATION.
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2014 Product of the Year finalists: Vote now; Boiler systems; Indirect cooling; Integrating lighting, HVAC
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.