Reduce operation noise and energy cost with torque current control and torque forward compensation

Noise in mechanical systems often arises from mechanical vibration due to an unbalance load. Such unwanted torque spikes arise from load-torque ripples on the motor shaft, and delays in motor-winding current commutation.

08/23/2007


Austin, TX —Noise in mechanical systems often arises from mechanical vibration due to an unbalance load. Such unwanted torque spikes arise from load-torque ripples on the motor shaft, and delays in motor-winding current commutation. Charlie Wu, senior. system and application engineer in the Microcontroller Division at Freescale Semiconductor suggests that the company’s digital signal controllers can be used to eliminate audio-frequency instabilities in mechatronic systems caused by torque ripple.



The MC56F8025 MCU eliminates audio-frequency noises caused by torque ripple in mechatronic systems. Source: Freescale Semiconductor

“Most motor control systems can be implemented by an 8-bit microcontroller (MCU),” Wu says, “but performance is often poor because of lack of current feedback loop.”

“Without a current control loop plus torque forward compensation, acoustic noises caused by torque ripple cannot easily be eliminated,” Wu continues. “It is difficult to add a current control loop into control system based on an 8-bit MCU because the processor cannot perform the intense math calculations at the required loop bandwidth.”

Wu points out that, on the other hand, a DSC implemented as a monolithic integrated circuit can reduce acoustic noise, mechanic noise, material cost, and complexity of control circuits and algorithms.

“Add current feedback loop with proper torque forward compensation,” he advises. “The torque forward compensation signal follows the estimated rotor position.”

C.G. Masi , senior editor, Control Engineering





No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
40 Under 40; Performance-based design; Clean agent fire suppression; NFPA 92; Future of commissioning; Successful project management principles
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me