Load-bank testing ensures performance, reliability

Maintaining genset performance, health, and reliability depends on performing regularly scheduled load-bank testing.


Load-bank tests assure facility managers that their generators will perform well at 100% of their nameplate rating. The absence of regular load-bank testing dramatically increases the potential risk of generator failure during an emergency. Load-bank testing should be a regular part of a generator maintenance program to avoid mechanical failure caused by extreme stress on the engine and other components when the generator is used in a power outage (see Figure 1).Figure 1: This technician is performing voltage checks during genset testing with a portable load bank. Courtesy: DynaTech It also helps maintain vital engine system parameters such as oil pressure and coolant temperature while preventing wet stacking and carbon buildup.

Wet stacking occurs when unburned fuel accumulates in the exhaust system due to running the generator at less than full load and therefore not producing enough heat to burn off the excess fuel. This accumulation can reduce engine lifecycle and efficiency by fouling the fuel injectors, engine valves, and exhaust system. If the correct mixture of fuel and air is not maintained, the engine will not operate at its highest level and will deliver less power.

As with wet stacking, carbon buildup typically occurs when the generator’s engine runs at less than full load, producing insufficient heat to remove the buildup. If carbon buildup continues unchecked, over time the piston rings can seize, which could allow the superheated fuel/air mixture to sneak past the rings and scorch the sides of the pistons (see Figure 2).

Load-bank basics

A load bank applies a stable controllable electrical load on a generator. It can be permanent or portable, can accommodate ac or dc, and can range from a few kW to multiple MW. Most load-bank units have an internal fan that cools the resistive elements and discharges the high temperature air away from the unit. It is very important to properly position the load-bank unit away from combustible material and to ensure that it is operated in a well-ventilated environment to keep it—and the generator—from overheating.

Table 1: Load Bank Test LogThe two types of load-bank testing methods are resistive and reactive. Resistive is the most common field testing method because it encompasses the full kW rating of the generator and the engine systems, such as the cooling, exhaust, and fuel delivery system. Reactive testing is typically performed at the genset factory to test kVA ratings.

Load-bank testing schedule

Generators must be able to go from a cold start to a full load in a matter of seconds. Just as the human body needs to be stretched and warmed up before a 100-yard sprint, the generator must be exercised at 30% load for at least 30 min monthly. Testing at this level and frequency keeps engine parts lubricated, prevents oxidation of electrical contacts, consumes fuel before it deteriorates, and enables reliable engine starting.

An annual load-bank test should be performed at 100% of the generator’s kW capacity for a minimum of 1 hr, or loaded to the minimum engine exhaust temperature recommended by the engine manufacturer. The load-bank test should be performed by stepping up the load at certain time intervals (see Table 1).

Testing tips

One of the goals of load-bank testing is to discover problems in a controlled situation rather than during an actual power failure. The following list suggests tips for discovering problems safely:

· When performing load-bank tests, be prepared for system failure, unexpected results, or the worst-case scenario.

· A backup generator should be in place at mission critical sites such as healthcare facilities with patients on life support, or any facility that absolutely cannot afford a power interruption.

· For facilities that are not mission critical, testing should occur during hours that can most easily manage a power failure—just in case.

· Ensure the generator is disconnected from the facility to prevent overloading.

· When testing, look for loose connections, leaks, and abnormal performance.

· An engine that emits black exhaust during the testing period typically is running at a high enough temperature to burn away the carbon buildup and the fuel in the exhaust system. However, if the smoke does not clear before the testing is completed, engine repairs may be necessary. Extensive smoke is most often caused by rings that have never seated properly, by a fuel pump that must be rebuilt, or by bad fuel.Figure 2: This photo shows the results of progressive carbon buildup. Over time, carbon buildup caused the rings to seize, resulting in a complete engine meltdown and a critical failure. Courtesy: DynaTech

· Other common occurrences during testing include high cooling system temperature and low oil pressure. High temperature can be due to a faulty thermostat or a restriction in the system. Low oil pressure can be the result of an oil pump in need of repair or an indication of excessive engine wear. 


Load-bank testing should be incorporated into a regular generator maintenance schedule to ensure peak performance and maximum reliability. Testing allows the operator to determine if the genset can run at its full kW capacity (without the risk of having to use the facility’s electrical distribution system and its load). Regularly-scheduled load-bank testing removes unused fuel in the exhaust and carbon buildup in the engine that can damage the genset and compromise its ability to produce emergency power when it’s needed most.

Ballas is the sales team leader for DynaTech, a generator sales and service company in Lebanon, Pa. He has experience creating and selling preventive maintenance agreements for air compressor and emergency generator systems.

No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
40 Under 40; Performance-based design; Clean agent fire suppression; NFPA 92; Future of commissioning; Successful project management principles
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me