Industrial PCs ease integration

Robotic integration: Hardware and software advancements, such as multi-core processors and industrial Ethernet fieldbus technology, are enabling engineers to integrate cost-effective robotic solutions with motion control, communications, and human-machine interfaces.

12/25/2013


This robot arm used in a welding application implemented by Houston-based ARC Specialties uses a CX1010 Embedded PC and TwinCAT NC PTP software from Beckhoff Automation to cost-effectively control a Fanuc ArcMate M710IC-50 robot and nearby machine, positiAdding open-control hardware and software to the convergence of well-known controls principles makes it possible to create machine designs that feature seamlessly integrated robots. This results in game-changing advantages for machine builders and manufacturers and the ability to integrate robot technology into more applications, including those that are traditionally among the most cost-sensitive.

The cost-saving benefits that make this possible include: reduced wiring, network and software platforms that are shared with the overall machine automation system, and a significantly reduced machine footprint. This has led to higher performance mechatronic and robotic solutions, including product packaging with variable product flow and complex material handling lines.

Previously, most machine control architectures that integrated robotics used independent robot controllers to implement the kinematics. These typically required separate programming from the general machine control and the specific engineered communication infrastructure, with special profiles for each application.

Beckhoff Automation demonstrated motion and robotic control capabilities at Pack Expo 2013 in Las Vegas, with one CX2020 Embedded PC running kinematics for a Codian Robotics delta robot as well as three additional axes of servos that were coordinated withToday, however, robotics and other motion control can be operated by industrial PCs (IPCs) and programmed in the same software environment. Modern multi-core processors, which are now standard in many IPCs, are able to control all automated elements on a machine, especially where intense robot dexterity and speed are required by the application. Only minimum CPU processing power is required for robotic kinematics, leaving ample reserves for other functions, such as measurement, condition monitoring, vision systems, rich multimedia for documentation, and training and tutorial materials. In fact, it is possible to easily run two or more delta robots on the same controller and to coordinate the motion between multiple robots and auxiliary axes by electronic gearing, CAM tables, G-code, and most other standard motion technology.

Another enabling technology that brings robot equipment to a wide range of applications is the broad acceptance of industrial Ethernet fieldbus technology, such as EtherCAT. This network has become a globally accepted standard in the realm of robotics that allows faster integration of kinematic solutions into machinery. In addition to microsecond-level communication speeds and high precision, EtherCAT also brings diagnostics functionality without having to add layers in hardware or software. For example, EtherCAT can automatically detect system line breaks enabling faster problem resolution while running network communications through a flexible data processing mechanism known as “processing on the fly.” All EtherCAT devices on a network can receive and process data independently, without requiring a higher level device to poll the network.

- Matt Lecheler is a motion specialist at Beckhoff Automation; edited by Jordan Schultz, associate content manager, CFE Media, Control Engineering and Plant Engineering, jschultz(at)cfemedia.com.

ONLINE

See link to related article on a platform integrating PLC, motion control, and robotics below.

For more information on Beckhoff’s robotics software: www.beckhoffautomation.com/kinematics     

Key concepts

  • Open-control hardware and software have made implementing cost-effective robotic solutions easier.

Consider this

  • Robotics integration leads to cost savings and, in turn, higher performance robotics.
  • Powerful industrial PCs now control robotics and other functions simultaneously.
  • Advanced networks increase robotic effectiveness through high-speed communication and diagnostics.


No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Water use efficiency: Diminishing water quality, escalating costs; Lowering building energy use; Power for fire pumps
Building envelope and integration; Manufacturing industrial Q&A; NFPA 99; Testing fire systems
Labs and research facilities: Q&A with the experts; Water heating systems; Smart building integration; 40 Under 40 winners
Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.