Implementing microgrids: Controlling campus, community power generation

Microgrids can lower cost and raise reliability for the owner, and for surrounding communities.

06/08/2015


This article has been peer-reviewed.Learning objectives

  • Understand what a microgrid is, and where it can best be implemented.
  • Know the organizations that govern microgrid design.
  • Define the criteria for best-in-class microgrids.

Microgrids are subsets of the regional electrical grid that have the ability to operate independent, or “island,” from the local utility. Microgrids normally operate in parallel with the utility, but they can operate in an isolated mode when utility service is interrupted or providing poor power quality. The design and operation of microgrids are optimized around the needs of the specific end users they serve. Because of their closer proximity to the end user’s loads, microgrids can provide more reliable and resilient power and a lower net cost of thermal and electric energy than can many utilities. They also are less subject to storm damage than long overhead utility cables. Microgrids can include conventional power generating equipment, energy storage, and renewables.

Figure 1: This photo shows Princeton University’s microgrid. All graphics courtesy: Trustees of Princeton UniversityBenefits of microgrids

Microgrids carry a number of benefits. Some of the reasons organizations establish microgrids include:

  • Produce heat and power less expensively than a centralized utility company, i.e., achieve lower lifecycle costs.
  • Achieve a lower carbon footprint than when producing heating and cooling on-site, while purchasing power from offsite.
  • Minimize impact of weather emergencies on core business operations.
  • Provide higher security against intentional malicious acts.
  • Provide higher-quality power than is available from the utility. In particular, some industrial applications, computing, and research facilities need highly stable voltage, frequency, and power factor to avoid interfering with their work.
  • Avoid the need for extensive utility distribution infrastructure upgrades. 
  • Produce additional revenue by participating in transactional relationships with energy markets.
  • Improve society through job creation in communities and local power generation.

Who owns microgrids?

Microgrids are owned and operated by college and university campuses, military bases, hospitals, housing complexes, research facilities, and some municipalities and businesses. Typically, these are organizations that place a high value on energy reliability, efficiency, security, power quality, or minimized environmental impact. The design and operation of microgrids is regulated by many organizations including National Fire Protection Association (via the National Electrical Code and other standards), Federal Energy Regulatory Commission, state boards of public utilities, state departments of environmental protection, and local construction codes. Where microgrids include boilers, there are additional codes that apply, such as the ASME Boiler and Pressure Vessel Code and state operator licensing programs.

Why the power grid needs microgrids

The regional electrical grids within the U.S. are complex networks of power generation and distribution systems that include many aging power plants, transmission lines, and substations—some dating back as far as the 1880s. The grid was not originally designed to meet today’s growing demands or survive regional weather-related emergencies. Most were built near the sources of fuel and water they consume, not the communities they serve. In fact, in 2013 the American Society of Civil Engineers rated the country’s power system with a D+. Our national electric production efficiency, from fuel input through power delivery to the customer, is less than 50%. Therefore, more than half the fuel that utilities purchase goes to waste as lost heat. Because most central utility plants are located far from customers, they are not designed to take advantage of the heat that is generated (and wasted) as a byproduct of generating power.

Alternatively, microgrids built to include combined heat and power (CHP) systems usually operate at least at 66% efficiency and often closer to 80%. This dramatic difference is the chief source of cost reduction. Additional benefits include the ability to operate core business assets during utility failures, take advantage of local and/or renewable energy sources, and increase power system reliability and resilience.

CHP sites are fairly common. There are more than 4,200 CHP sites installed already in the U.S, according to the Dept. of Energy CHP Installation Database, maintained by ICF International. The U.S. Environmental Protection Agency website lists many benefits of CHP. The EPA Catalog of CHP technologies also lists the quantity of CHP sites in place, and the most common forms of power generation and heat recovery. They include reciprocating engines, gas turbines, boiler and steam turbines, microturbines, fuel cells, and other forms of CHP.

The community case for microgrids

The presence of a microgrid benefits a community beyond the microgrid’s boundaries. When microgrids operate in parallel (synchronized) with the utility grid, they help stabilize local voltage, frequency, and power quality. These benefits don’t stop at the electric meter. They also extend to the community. Similarly, microgrids that are economically dispatched can sell power to the surrounding grid at times when they can operate less expensively than the utility, i.e., they reduce net cost for all power consumers.

Microgrids exist in the communities they serve, thus they are more likely to be sources of local employment than a utility power station 100 miles or so away. Microgrids can take advantage of specialized local fuel supplies—such as landfill gas or urban wood waste—that may be too expensive to transport to a distant power plant. In this way, they can turn something that might otherwise be seen as a waste into a useful resource.

The security case for microgrids

Microgrids tend to be smaller and scattered throughout a region, instead of large and centralized. They can take advantage of local labor and fuel supplies. The failure of one microgrid rarely has a broad regional impact. But having one microgrid remain operational during a regional emergency can offer a point of refuge and safety to first-responders or people displaced from the region.

During Hurricane Sandy, many CHP microgrid systems continued to operate even while the surrounding towns were dark. For example, Co-Op City in the Bronx, a borough of NYC; Princeton University (see “Case study: Microgrid at Princeton University”); New York University; and Nassau cogeneration facility (which supports a hospital) maintained core business operations and were able to be places of refuge for the surrounding communities.


<< First < Previous 1 2 Next > Last >>

LYLE , MN, United States, 06/26/15 12:31 PM:

Expand this to include solar gardens and the Tesla Powerpack as the next generation of microgrids. In the future add SMR's (Small Modular Reactors) to the mix.
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Combined heat and power; Assessing replacement of electrical systems; Energy codes and lighting; Salary Survey; Fan efficiency
Commissioning lighting control systems; 2016 Commissioning Giants; Design high-efficiency hot water systems for hospitals; Evaluating condensation and condensate
Solving HVAC challenges; Thermal comfort criteria; Liquid-immersion cooling; Specifying VRF systems; 2016 Product of the Year winners
Driving motor efficiency; Preventing Arc Flash in mission critical facilities; Integrating alternative power and existing electrical systems
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
Designing generator systems; Using online commissioning tools; Selective coordination best practices
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
click me