How climate science affects building design

New York City’s Urban Green Council concluded that NYC could reduce its carbon footprint 90% by 2050 by focusing primarily on the building sector.


Climate science tells us we must reduce carbon pollution dramatically—often citing an 80% worldwide reduction by 2050—to ensure an environment in which humans can live in security and prosperity. Many scientific organizations conclude that preventing catastrophic, irreversible outcomes requires keeping total global average warming no more than 3.5 F compared to pre-industrial levels, about 2 F above current levels.

To prevent temperatures rising above such dangerous levels, atmospheric concentrations of carbon dioxide (CO2) would need to peak below the 400 to 450 ppm range and stabilize in the long term at around today's level, which is about 395 ppm and increasing by about 2 ppm per year. A steady CO2 concentration at about or below 450 ppm by 2050 would require global emissions to decline about 60% by 2050. This suggests that in industrialized countries, including the United States, greenhouse gas emissions would have to decline by about 80% by 2050.

In February 2013, the Urban Green Council (the U.S. Green Building Council's New York City [NYC] chapter) published 90 by 50, which concluded that NYC could reduce its carbon footprint 90% by 2050 by focusing primarily on the building sector, which is the source of 75% of NYC's greenhouse gas emissions.

To achieve this target, emission reductions of between 90% and 100% for new construction buildings are necessary.


Umit Sirt is a partner and senior engineer at Taitem Engineering where he manages the energy consulting services department, providing services relating to building and industrial energy efficiency including benchmarking, general feasibility studies, advanced energy models, and investment-grade energy audits; net-zero design and consulting; and technical reviews, energy master planning, and outreach.

No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
BIM coordination; MEP projects; NFPA 13; Data center Q&A; Networked lighting controls; 2017 Product of the Year finalists
Emergency lighting; NFPA 3 and 4; Integrated building systems; Smart lighting, HVAC design
Designing for energy efficiency; Understanding and applying NFPA 101 for mission critical facilities; Integrating commissioning and testing for fire alarm systems; Optimizing unitary pumping solutions
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
Driving motor efficiency; Preventing Arc Flash in mission critical facilities; Integrating alternative power and existing electrical systems
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
click me