Harley Ellis Devereaux: Crittenton Hospital Medical Center, Cornerstone Bed Tower Project

New construction of a hospital/health care facility.

08/14/2014


Spatial conflicts were resolved during design instead of in the field by leveraging BIM tools. Several innovative and energy-efficient systems were included with the aid of energy model simulations. Courtesy: Steve Maylone PhotographyEngineering firm: Harley Ellis Devereaux
2014 MEP Giants rank: 72
Project: Crittenton Hospital Medical Center, Cornerstone Bed Tower Project
Address: Rochester Hills, Mich., U.S.
Building type: Hospital/health care facility
Project type: New construction
Engineering services: Automation/controls, electrical/power, fire/life safety, HVAC/mechanical, lighting, energy/sustainability, plumbing/piping, and other
Project timeline: 9/8/2011 to 5/1/2014
MEP/FP budget: $1 million

Challenges

One of the firm’s challenges was to minimize the size of the mechanical room without compromising the accessibility and maintenance of the equipment. Lighting in the patient rooms allow the most flexibility with the use of multi-switch schemes that allow patient and visitor to adjust light to the desired effect. Exam lighting can be step-dimmed to 50%, giving physicians control over lighting levels, and providing overall comfort to patients. Courtesy: Steve Maylone PhotographySpace was saved by depressing the first floor, allowing for taller indoor air handling units. The air handling units were uniquely configured with the return fan stacked on top of the supply air tunnel, saving valuable floor space. The team had to deal with a challenge of matching floor-to-floor heights of the existing facility. In looking at several ductwork routing layout possibilities, the design team collaborated to provide two large central duct shafts that lessened the size and length of duct routes. This made it possible to provide many areas with ceiling heights greater than the default 8-ft high where the floor-to-floor height was only 12 ft 5 in. The existing site primary utility service did not have available capacity to accommodate the building addition and associated increased load. Additional considerations were also necessary to accommodate the limited project budget, aggressive schedule, and restrictive space for new systems.

Solutions

Public areas use photocell sensors to control fixtures to half level during the day. The firm chose 1x4-ft luminaires for corridors with stepping ballasts; this allows for greater spacing between fixtures and a reduced number overall, further reducing stress and fatigue on patients and staff. Courtesy: Steve Maylone PhotographyMultiple smaller boilers were selected to allow for the most efficient operation of the system, that is, low firing rates, and cooler return water temperature. A shell and tube heat exchanger was provided and connected to the hospital’s steam system to serve as a backup to the hot water boilers. The fan coils for the 55-ton variable refrigerant flow system were zoned to extract heat from heat dissipating areas like communication closets and electrical rooms and routed to walkways providing heating without the need to run the compressors. Another space-saving tool used was a pre-engineered waste and vent system. This system worked well with the stacked toilet rooms in the bed tower, eliminating the vent stack that typically follows the waste stack. The end result was a reduction in cost and saving of space without compromising the performance of the waste system. To address these issues, the existing hospital’s utility service was replaced with a new dual 13.2 KV primary service, with new 15 KV switchgear and automatic throw-over scheme contained within a stand-alone prefabricated switchgear house, which was released as an early pre-purchase package. To provide seamless transition without interruption of the site, critical phasing was specified to allow changeover of existing loads to the new system prior demolition of the existing service.



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Combined heat and power; Assessing replacement of electrical systems; Energy codes and lighting; Salary Survey; Fan efficiency
Commissioning lighting control systems; 2016 Commissioning Giants; Design high-efficiency hot water systems for hospitals; Evaluating condensation and condensate
Solving HVAC challenges; Thermal comfort criteria; Liquid-immersion cooling; Specifying VRF systems; 2016 Product of the Year winners
Driving motor efficiency; Preventing Arc Flash in mission critical facilities; Integrating alternative power and existing electrical systems
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
Designing generator systems; Using online commissioning tools; Selective coordination best practices
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
click me