Efficiencies, losses of liquid versus dry-type transformers

There are important tradeoffs to be made when moving transformers from outdoor locations to inside a facility.

08/21/2012


I saw a design for very large data center project a few years ago, that used twenty-four 3,000-kVA cast resin units located inside the facility, close-coupled to low voltage switchgear, in a wise "loadcenter" approach (with RC snubbers on the primary of every unit). That arrangement probably eliminated at least a million pounds of underground copper that would have been otherwise required to connect transformers to switchgear.

However, there are important tradeoffs to be made when moving transformers from outdoor locations to inside the facility. One obvious tradeoff is that indoor electrical rooms need to be enlarged to accommodate the physical space requirements of the transformers (which can be significant, especially if they include primary air switches).

Secondly, the heat from the losses of the transformers now is exhausted to inside the building, instead of simply being vented to outdoor air. In most cases, that heat will result in additional loading on the plant’s cooling system, which usually will greatly increase the magnitude of wasted energy. You have the waste heat due to losses rejected by the transformers inside the building, plus the energy consumed by the cooling system to remove that same waste heat from the building. So, efficiency becomes even more important when moving the transformers indoors.

The table below shows a comparison of four styles of transformers, with "typical" efficiencies, in the facility in the above example. Assumptions in the table are that transformers are running at average loading of 75% and that average cost of energy is $0.07 per kWH. The right column uses the Cooper FR3 Envirotemp HDC transformer as baseline, and shows the incremental cost of the other three types, using those assumptions.

Comparison of Transformer Types and Parasitic Wasted Energy

Transformer
Construction
Type

Efficiency at
75% Average
Load

Energy Wasted
Annually,
Incl. HVAC

Incremental Annual
Cost of Wasted
Energy

FR3 Liquid HDC, 55 C

99.6%

3.80 MW-Hr

$0

Cast Coil, 80 C Rise

99.2%

8.89 MW-Hr

$356,440

VPI or Cast Coil Dry, 115 C Rise

98.7%

15.32 MW-Hr

$806,384

VPI Dry, 150 C Rise

98.4%

19.62 MW-Hr

$1,203,098


Some readers will argue that there are designs of dry-type and cast coil transformers available with higher efficiencies than those typical values listed in the table. That’s true, but improving efficiency in any dry-type design almost always involves large increases in physical size and in initial cost (and often, involves large and difficult-to-manage increases in inrush current on energization).

The point is, that a liquid HDC transformer, with its average winding temperature operating at 55 C above ambient temperature, will always produce lower losses and less heat than a dry-type transformer with its windings running at an 80 C, 115 C, or 150 C temperature above ambient air temperature.



Anonymous , 03/14/13 09:27 AM:

Using the FR3 liquid filled transformer indoors in lieu of cast coil would provide the cooling savings, and reduce the copper usage mentioned in the article... best of both worlds.
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Water use efficiency: Diminishing water quality, escalating costs; Lowering building energy use; Power for fire pumps
Building envelope and integration; Manufacturing industrial Q&A; NFPA 99; Testing fire systems
Labs and research facilities: Q&A with the experts; Water heating systems; Smart building integration; 40 Under 40 winners
Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.