Do primary windings of liquid-filled transformers fail?

The short answer is no, primary windings of liquid-filled transformers don't fail. Here's why.


VPI failure at ends of windings, and flashover to ground.In the same 35-year period of time, I’m counting up the number of failures of primary windings of liquid-filled transformers I’ve experienced, or have been reported to me, or that I’ve heard about or read about, caused by vacuum breaker switching in data centers. It’s exactly NONE.

In that same period of time, I’ve commissioned well over 500 liquid-filled transformers installed indoors and outdoors at large data centers, and have experienced zero primary winding failures, despite hundreds of deliberate switching operations of upstream vacuum breakers during commissioning and later plant operations, under all possible conditions of system loading and connection configurations in various primary loop arrangements. Nearly half of these had 34.5 kV primaries, as nasty and tough and ugly a utility distribution voltage as there is on the planet (more to come about system voltages and their relationship to the problem).

Again, I’m only relating my personal experiences and observations and opinions here. If anyone knows of failures of primary windings in liquid transformers installed in data centers caused by this phenomenon, I would like very much to learn about them.

Some Explanations for the Differences 


Clients ask me, “if you believe all of this so strongly, what logical reasons are there to explain these differences?”  Here are some of the reasons:

  • Of the 30 or more failures of dry-types I’ve personally investigated, approximately 20% of those were failures deep within the windings, suggesting oscillatory transients at the resonant frequency of the transformer, most likely caused by re-strike ignition phenomena during breaker opening at light transformer loading. (All of those failures coincidentally had secondary loads of 6 or 12 pulse input rectifiers in the front ends of static UPS systems).
  • But, the large majority of the failures I investigated occurred at the ENDS of the primary windings, or at delta corner jumper leads, or at tap connections, and often flashed over to the grounded steel enclosure or to grounded core steel. I’ve come to believe that a major part of the problem was the connections to these live parts were insulated only by air, and that arrangement provided an all-too-easy flashover path on seeing a sudden big blast of L(di/dt) come shooting out the ends of the windings.
  • Moreover, these failures occurred in areas where winding insulation was changing from paper to air-only, and where the line impedance was also chancing. Had all these connections been instead immersed under a high dielectric strength insulating fluid, I believe that many of these failures would not have occurred.
  • In other words, I think that a number of these failures might not have actually been WINDING failures. They were more likely terminal connection failures due to the inadequate dielectric strength of the surrounding air, and the actual winding damage that did occur might have been mostly just collateral damage. (Interestingly, the majority of these did not even have surge arresters of any type connected to the winding terminals). More discussion about this coming next week.

Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me