Commissioning commercial buildings

Ideally, all nonresidential buildings would be commissioned, and the team would start at the onset of the project. Because that’s not always the case, commissioning authorities and experts offer advice on building projects in various stages of commissioning, recommissioning, or retro-commissioning.

08/27/2015


Left to right: Mark A. Gelfo, James I. Givens, Jim Huber, Brian Lindstrom, and Paul MeyerRespondents

Mark A. Gelfo, PE, LEED Fellow, GGP, CxA, EMP, Principal/Vice President, TLC Engineering for Architecture, Jacksonville, Fla.

James I. Givens, CxA, EMP, Division Manager, Field Services, RMF Engineering Inc., Baltimore

Jim Huber, CEM, CDSM, CMVP, LEED AP, NEBB CP, President, Complete Commissioning, Annapolis, Md.

Brian Lindstrom, PE, DCEP, National Director of Commissioning, Burns & McDonnell, Kansas City, Mo.

Paul Meyer, PE, CBCP, LEED AP, CEM, GBE, Senior Vice President, WSP, New York City


TLC and PSI commissioned the HVAC, lighting, and thermal envelope systems of University of Florida’s Heavener Hall Warrington College of Business building. Complex building systems need testing, fine-tuning, and ongoing commissioning to ensure ongoing buiCSE: Please describe a recent project you’ve commissioned.

Jim Huber: Some details of the project cannot be shared; however, it was a hangar facility on a military base in Delaware. The facility is approximately 66,000 sq ft, comprised of a large hangar bay, facility operations, and office space. The project was approximately 2 yr old and had never performed properly since the project turnover; we were brought on to do third-party commissioning of the mechanical systems. The commissioning effort was originally focused primarily on the HVAC systems (geothermal water-source heat pumps, water-to-water heat pumps, boilers, and air handlers), but eventually expanded to include the building enclosure.

Brian Lindstrom: We recently commissioned two new combined heat and power (CHP) plants with more than 40 MW of N+1-redundant capacity as part of a multiphase energy-performance program for a federal research campus in the Washington, D.C., metro area. Our work was in conformance with ASHRAE Guideline 0, U.S. Green Building Council LEED enhanced requirements, the GSA P100, and mission critical facility best practices for central utility plants that included functional testing, integrated systems testing, and black-start testing. Key equipment included natural gas combustion-turbine generators (CTG), heat-recovery boilers, absorption chillers, electric centrifugal chillers, steam chillers, thermal-energy storage tanks, heat-recovery steam generators (HRSG), diesel generators, and a balance of plant (BOP) control system.

Paul Meyer: The Plant and Animal Agrosecurity Research (PAAR) Facility is a highly secure biocontainment building. It is for conducting research with organisms that cause diseases in animals classified at biosafety level 3 (BSL-3 and BSL-3 Ag). It is also needed for working with plant diseases that could cause undue economic hardship on agriculture if released into the environment. PAAR is one of only two labs nationally with capacity for both plant and animal research at the BSL-3 and BSL-3 Ag safety levels. Ohio State University operates the BSL-3 facility on the Wooster campus, and it is the university’s first BSL-3 Ag facility. BSL-3 and BSL-3 Ag refer to safety guidelines established by federal law for conducting research with a variety of microorganisms. Under federal guidelines, all facilities handling potentially infectious agents must adhere to strict procedures to ensure containment of these pathogens. Depending on the ease with which microorganisms can be transmitted, they are classified as BSL-1, BSL-2, BSL-3, or BSL-4, with BSL-4 carrying the highest risk of infection. A BSL-3 Ag facility meets the standards for handling diseases of food-producing animals classified at the BSL-3 safety level.

The facility comprises:

  • 27,537 gross sq ft
  • Two BSL-3 enhanced laboratories and four BSL-3 Ag animal-isolation rooms that can handle large animals such as cows and pigs
  • Office, lockers and changing facility, decontamination areas, wash areas to clean cages, and a necropsy area for sample collection
  • Special airtight construction
  • Outgoing air is filtered through high-efficiency particulate air (HEPA) filters that trap microorganisms and prevent escape into other sections of the facility and the surrounding environment.

<< First < Previous Page 1 Page 2 Page 3 Next > Last >>

Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me