College, university building electrical and power system design

College and university campus buildings have a lot going on—classes, research, dining, and sleeping. Electrical and power systems—including standby, emergency, and backup power—are key components.

12/19/2013


Robert Garra, PE, CDT is Vice president, electrical engineering of Cannon Design, Buffalo, N.Y. Courtesy: Cannon DesignRandy Hassler, PE, LEED AP is a Principal at McClure Engineering, St. Louis, MO. Courtesy: McClure EngineeringAndrew Slater, PE, is an electrical engineer at HGA Architects and Engineers in Milwaukee, WI. Courtesy: HGA Architects and Engineers

Participants

Robert Garra, PE, CDT, Vice president, electrical engineering, Cannon Design, Buffalo, N.Y.

Randy Hassler, PE, LEED AP, Principal, McClure Engineering, St. Louis, MO

Andrew Slater, PE, Electrical engineer, HGA Architects and Engineers, Milwaukee, WI


CSE: What’s the one factor most commonly overlooked in electrical systems in such buildings?

Slater: The arc flash, short circuit, and coordination study are commonly overlooked items in an electrical system. The study is essential to ensuring any outages are limited to a small area. The arc flash helps keep maintenance staff aware of the proper safety protocols that are needed to maintain particular distribution equipment.

Hassler: Campus buildings are typically designed for 50- to 100-year life. Designing for routine maintenance and with end-of-life replacement should be a consideration. For example, feed-through panelboards require de-energizing multiple panels for maintenance and are more difficult to replace at end of life compared to panels that are fed individually. A building often goes through multiple partial renovations during its life span, so keeping the electrical distribution tied to the building core with elevators, bathrooms, and mechanical rooms provides a greater chance that it will not require relocation due to a minor renovation. 

CSE: Describe a recent project in which you had complex metering and sub-metering in a building.

Hassler: Building energy usage and sub-metering on HVAC equipment is commonly requested. Numerous electrical sub-meters are required for U.S. Green Building Council LEED measurement and verification; however, if planned for early in the electrical distribution design, the metering can be simplified by segregating loads on different panels.

Slater: The most recent project that had a complex metering system was actually for an industrial facility. The system included the main primary voltage meter, the secondary meter located at the main circuit breaker, and individual branch feeder sub-meters. 

CSE: How do you balance the need for reliable power with the desire for efficiency and sustainability?

Garra: This is a tough balance. We need to put public safety first and then try to make the systems as efficient as possible. The conservative nature of NFPA 70: National Electrical Code requires engineers to size equipment in a manner that usually results in oversized equipment. Collaboration with end users or steering them toward energy-efficient, U.S. EPA Energy Star-rated equipment is an important option. Counting watts to maximize the efficiency of the electrical infrastructure helps maintain the balance of efficiency and safety. In this case, we can use the lower power draws in our calculations, thus lowering the required system capacities. Using LED luminaires or using advanced lighting control systems helps reduce unnecessary and wasteful energy usage. 

CSE: What type of backup or standby power systems have you specified into colleges and universities recently?

Hassler: Engine generators for loads that need long duration backup, such as research freezers, growth chambers, vivarium HVAC, etc. In research facilities, owners are requesting approximately 2 W/sq ft of standby power allowance for lab use. Consideration is also required for cooling to prevent equipment from overheating. Uninterruptable power supply (UPS) for loads that are sensitive to any fluctuation in power, such as computers, mass spectrometers, etc. It would not be uncommon to have a dedicated UPS for a specific piece of equipment. When a UPS system is used for multiple pieces of equipment, then scalable UPS systems are an attractive option that can be modified as equipment is added, removed, or replaced. Maintenance bypass switches on automatic transfer switch (ATS) and UPS to allow for routine service are usually prudent. It should be discussed who will test and maintain the equipment, pay for service contracts, and pay for ongoing maintenance (i.e., facilities, the department).



Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me