Cogen with Lean-Burn Cuts Health-Care Cost

When it came time for administrators at St. Catharines General Hospital in St. Catharines, Ontario, Canada, to consider ways to control costs, energy expenditures jumped out. As a large facility in a cold climate, the hospital had a significant heating load for more than six months of the year. And its laundry facilities had a year-round need for hot water.

06/01/2002


When it came time for administrators at St. Catharines General Hospital in St. Catharines, Ontario, Canada, to consider ways to control costs, energy expenditures jumped out.

As a large facility in a cold climate, the hospital had a significant heating load for more than six months of the year. And its laundry facilities had a year-round need for hot water. With rising fuel costs for space and water heating, combined with increasing costs for electric power, St. Catharines was looking for a solution to several energy-use issues.

For help they turned to St. Catharines-based Peninsula Engineering, whose engineers determined that the facility was an ideal candidate for a combined-heat-and-power (CHP) system, with one fuel source producing two forms of energy—in this case, electric power and hot water. Engineers also recommended lean-burn natural-gas-engine gensets with heat recovery boilers. Together, the generator sets and the heat from the engine exhausts and cooling systems would provide all the electricity, heat and hot water needed by the facility.

The installation consists of two 1.25-MW-rated lean-burn generators with a total electrical output of 2.5 MW at 600 volts. The total thermal output—5.12 million BTU/hr—is enough to supply winter space heating loads, domestic hot water for laundry and other needs, and excess capacity for future growth.

Heat is extracted from the engine in two ways: from the exhaust gases and from the engine cooling system. A heat-recovery boiler, located in the engine exhaust stream, transfers the heat energy from the 500

A separate heat exchanger transfers the waste heat from the engines' cooling systems to the hospital's hot water systems. By extracting as much energy as possible from the natural gas, the generators and heat-recovery boilers produce an electrical efficiency of nearly 39% and a thermal efficiency of nearly 46% for a combined efficiency of about 84%.

Sized to supply all of the hospital's electrical needs, the units also generate enough power to facilitate load-shedding in cooperation with the local utility at times of peak demand. This benefits the hospital economically and helps the local utility to defer capacity additions and associated expenses.

The system also features digital master controls and utility paralleling switchgear, which greatly simplify system operation. Designed and built to work as an integrated system, the generators, controls and switchgear provide easy installation, intuitive operator control, sophisticated monitoring options and exceptional reliability.

From Pure Power, Summer 2002





No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
40 Under 40; Performance-based design; Clean agent fire suppression; NFPA 92; Future of commissioning; Successful project management principles
BIM coordination; MEP projects; NFPA 13; Data center Q&A; Networked lighting controls; 2017 Product of the Year finalists
Emergency lighting; NFPA 3 and 4; Integrated building systems; Smart lighting, HVAC design
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
Driving motor efficiency; Preventing Arc Flash in mission critical facilities; Integrating alternative power and existing electrical systems
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me