Codes for boiler control systems and pressure vessels

The end user is ultimately responsible to use the correct code for pressure sensors and transmitters for boiler controls and pressurized vessels.

02/13/2014


Figure 1: AST 4600 Pressure Transmitters from American Sensor Technologies are explosion-proof transmitters with a 1/4-in. male NPT port, a very popular fitting used in boiler tubing and piping systems. Courtesy: www.astsensors.comPressure sensors and transmitters are extensively used in pressure vessels and boiler systems to monitor fuel, steam, water, and air pressure. These sensors perform safety and control functions within the plant to maintain a safe environment with maximum performance.

Sensors in these applications are typically connected to the process via a threaded connection that allows liquid or gas to be measured in a leak-free condition. To retain the pressure at operating and overload conditions, the pressure port must be able to handle the operating pressure and temperature conditions.

See Figure 1 for a typical pressure sensor with ¼-in. male national pipe thread (NPT) port, a very popular fitting used in boiler tubing and piping systems.

ASME B31 code

The ASME B31 code for pressure piping is a very popular boiler code; it covers power piping, fuel gas piping, process piping, pipeline transportation systems for liquid hydrocarbons and other liquids, and refrigeration piping, as well as heat transfer components and building services piping. Prior to ASME B31, this code was known as ANSI B31.

Within the B31 code are many subcodes that define the exact application and use of pressure sensor fittings and ports that are allowable under the code. The widely used codes include:

  • B31.1- Power Piping for industrial plants and marine applications. This code prescribes minimum requirements for the design, materials, fabrication, erection, test, and inspection of power and auxiliary service piping systems for electric generation stations, industrial institutional plants, and central and district heating plants. It also covers boiler external piping for power boilers and high-temperature and high-pressure water boilers in which steam or vapor is generated at a pressure of more than 15 psig.
  • B31.3 - Process Piping for use in chemical & petroleum plants, refineries processing chemicals and hydrocarbons, water and steam. The code contains rules for piping found in petroleum refineries; chemical, pharmaceutical, textile, paper, semiconductor, and cryogenic plants; and related processing plants and terminals. The code covers requirements for materials and components, design, fabrication, assembly, erection, examination, inspection, and testing of piping handling fluids, gases, steam, and air. Pressure sensors with either male or female process ports are covered under this code whenever the pressure is more than 15 psig.

Pressure port design considerations under B31.3

The B31.3 code is intended for manufacturers, users, constructors, designers, and others concerned with the design, fabrication, assembly, erection, examination, inspection, and testing of piping, plus all other potential governing entities.

All pressure sensors employ some form of a diaphragm that is either machined from one piece of metal or welded or O-ring clamped as a two-piece assembly. This section of the pressure sensor is the thinnest and most sensitive of all components.

Figure 2(a) shows a one-piece thick 0.022-in. diaphragm while Figure 2(b) depicts a welded thin 0.001-in. thick diaphragm. Together, with the thickness and the type of metal, the operating pressure and operating temperature range dictate the safety conditions under which the pressure sensor can operate.

Figures 2a and 2b: Figure 2a shows a one-piece-thick 0.022-in. diaphragm while 2b shows a welded thin 0.001-in. thick diaphragm; both are used in the construction of a pressure transmitter. This section of the pressure sensor is the thinnest and most sensFigures 2a and 2b: Figure 2a shows a one-piece-thick 0.022-in. diaphragm while 2b shows a welded thin 0.001-in. thick diaphragm; both are used in the construction of a pressure transmitter. This section of the pressure sensor is the thinnest and most sens

Stresses and quality factors (for welded diaphragms only) are other important design considerations taken into account under B31. Metals such as strain hardened A-479-316L stainless steel level 2 need to be impact tested when used below -20 F. The impact tests must conform to B31.3 Table 323.2.2.

When sensors are constructed from metals such as N07718 (Inconel 718) and N10276 (Hastelloy C276) that offer temperature resistance from -325 F to +300 F, no impact testing is required.

Based on the calculations and thermal limits for the metals as required by B31.3 code, below are samples of calculations needed to determine the correct diaphragm thickness for a one-piece pressure sensor designed free of welds. Each sensor material has different containment capabilities based on the material properties and exposure to temperature.


<< First < Previous 1 2 Next > Last >>

No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Water use efficiency: Diminishing water quality, escalating costs; Lowering building energy use; Power for fire pumps
Building envelope and integration; Manufacturing industrial Q&A; NFPA 99; Testing fire systems
Labs and research facilities: Q&A with the experts; Water heating systems; Smart building integration; 40 Under 40 winners
Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.