Case study: Putting UPS systems to work

Many modern uninterruptible power supply (UPS) systems have an energy-saving operating mode. Data show that very few data centers put it to use because of the potential risks.


Figure 4: The photo shows a 415/240 V, 1,100-kW UPS module with advanced eco and VMMS modes.Philadelphia-based Jacobs was part of a team that recently finished construction of a 2.7-MW (IT load)—expandable to 5.4-MW—data center located in the Midwest. During commissioning, Jacobs was able to test its design by running the facility in the different modes of UPS operation to determine the effect on the overall efficiency of the facility.

The data center is fed by 415/240 V power from fully redundant UPS systems configured in a 2N arrangement. Each of the six UPS systems is a 1,100-kW, single-module, and scalable-type UPS that contains three 275-kW modules and can be expanded to four 275-kW modules. The UPS systems are arranged in “A” and “B” critical powertrains. A powertrain also consists of a step-down transformer and secondary switchgear.

The facility is served medium-voltage power via two utility services, each terminating on separate medium-voltage switchgear lineups. Backup power is provided to each medium-voltage switchgear lineup by a power plant with three diesel generators, expandable to six generators. Each section of medium-voltage switchgear serves multiple critical and mechanical powertrains.

Using suitcase-type load banks scattered throughout the data center, the facility was loaded to 1,300 kW, approximately 50% of the total capacity. This equates to about 217 kW per UPS system. The “A” side and “B” side UPS systems were placed in various modes of operation that included normal double-conversion, high-efficiency eco mode, and variable management module system (VMMS). In VMMS mode, the UPS unit regulates the number of modules required to meet the load (see Figure 4).

Load readings were taken and the PUE calculated for each mode of operation. The potential cost savings also was calculated based on a utility rate of 10 cents/kWh. The following table summarizes the PUE and potential savings results.

Table 1: Summary of data center PUE and potential cost savings

About the author

Kenneth Kutsmeda is the engineering manager for mission critical at Jacobs. For 20 years, he has been responsible for engineering, designing, and commissioning power distribution systems for mission critical facilities. He is a member of the Consulting-Specifying Engineer editorial advisory board.

No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Commissioning lighting control systems; 2016 Commissioning Giants; Design high-efficiency hot water systems for hospitals; Evaluating condensation and condensate
Solving HVAC challenges; Thermal comfort criteria; Liquid-immersion cooling; Specifying VRF systems; 2016 Product of the Year winners
MEP Giants; MEP Annual Report; Mergers and acquisitions; Passive, active fire protection; LED retrofits; HVAC energy efficiency
Driving motor efficiency; Preventing Arc Flash in mission critical facilities; Integrating alternative power and existing electrical systems
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
Designing generator systems; Using online commissioning tools; Selective coordination best practices
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
click me