Building automation + integration = efficiency

The building automation system (BAS) has become key to ensuring all systems within a building are working effectively and efficiently. Integration of lighting, HVAC, fire/life safety, and all other engineered systems requires the designer to specify an appropriate system.


This article is peer-reviewed.Learning objectives

  • Compare various protocols that govern the building automation system (BAS).
  • Demonstrate how to integrate all systems into a “smart building” for the most effective integrated design of automation and control systems.
  • Apply a BAS to improve energy efficiency within a building. 

Figure 1: According to the Center for Climate and Energy Solutions, commercial and residential building space represents 39% of total energy consumption in the United States, more than any other sector. All graphics courtesy: American Auto-MatrixWith the influx of the Smart Grid and smart mobile applications, the building automation system (BAS) landscape has developed much faster than mechanical, electrical, plumbing (MEP), and fire protection products over the past decade. It is the driving force for optimized operations, improved reliability, and energy savings through the integration of building systems critical to the functionality of a facility.

Through the years, occupancy, comfort, safety, reliability, and efficiency have been key factors in the development of the technologies. However, as the global conscience has changed with regard to the impact of humans on the environment, and global demand for and access to energy has risen, a new driving imperative has been placed on facility professionals, engineers, and building occupants. To put it another way, humanity’s goal is to reduce our energy consumption in a manner that significantly decreases the negative impacts the consumption has on our environment, and thereby on all of nature.

According to the Center for Climate and Energy Solutions, commercial and residential building space represents 39% of total energy consumption in the United States—more than any other sector—of which 70% is associated with HVAC systems, depending on location and environment (see Figure 1). Up to 30% is plug load and lighting. It stands to reason that integration and operation of these buildings to reduce energy consumption is a top priority. This can only be done through integration of the system with the use of technologies such as energy management and BAS, and by doing it in a manner that ensures the efficient operation of a facility. Combine this with the integration of a variety of devices via the Internet (the Internet of Things, or IoT) and software available as a monthly or annual service that does not require it be loaded on a local PC or server (the “cloud”). Engineers and designers have the ability to create more efficient buildings that use current technologies to decrease consumption. This can all be done while giving access to analytical tools designed to help pinpoint outlying operation and energy issues before they become a problem.

Figure 2: BAS architecture encompasses HVAC and other systems integration through multiple protocols into an integrated system. Web browsers, the cloud, and mobile applications are used to create a dynamic system where data-storage capacities are virtuall 

The evolution of BAS

In the 1970s and ‘80s—due to increased energy prices—the demand for a more cost-effective building sent the BAS industry into a whirl of development to make buildings smarter. Taglines like “smart building solutions” started dotting the competitive landscape as building-automation companies were able to leverage cheapening computer technologies and bring them into the building space. This was a golden age for the BAS industry. During this peak demand to reduce consumption, BAS manufacturers globally created new and relevant technologies related to controlling a building. Competition increased and the direct digital-control solution became the standard expectation in buildings everywhere. However, most systems were disparate and only designed to control specific operations of a building, with other key components not being visible or integrated through the controlling mechanisms. 

Over the next decade, the building automation landscape moved forward with larger leaps as technologies evolved at an almost exponential rate. During this time, energy prices inevitably fell and the larger cost-driven model for energy reduction began to wane as the economy strengthened. The pressure was off and, therefore, the pain soon forgotten. However, the building automation industry was still hard at work developing solutions relevant to the building market and energy reduction. The end user was beginning to ask for disparate systems that link together to allow for competitive selection of products as well as service providers.

Open protocols became an increasingly common topic of discussion as users realized the power of integration. During this time, our world was just beginning to understand the impact our energy consumption was having on the planet. However, we were still developing the solutions to dramatically reduce our environmental impact: open protocols for fully integrated systems. This was the beginning of the BACnet Project Standards Committee in 1987 (introduced as an ANSI/ASHRAE standard in 1995), and the introduction of LonTalk (now collectively referred to as LonWorks) protocol in 1990 by Echelon Corp. (It was submitted and accepted as an ANSI standard in 1999).

Today, the majority of buildings are designed with direct digital BAS. Through the evolution of protocols and technologies, the BAS has become a key component to ensuring the effective function of an entire building. In a perfect world, this would mean all buildings could take advantage of a “plug-and-play” system. However, it is not as easy due to market forces of constructing low-cost buildings and passing energy cost to leasing tenants in commercial buildings. Factors such as first cost, disparate manufacturers, legacy control systems, Internet security, and age of the building all come into play when considering the integration.

In addition, the ever-expanding cloud and the IoT has opened a whole new world of interconnectivity, allowing smart mobile devices and applications to be applied to these complex systems. Web browsers, software as a service (Internet-based software platforms, also known as SaaS), and mobile applications can be used to create a dynamic system where data-storage capacities are virtually limitless and access and control are just a touch away. With all this, the opportunity for efficiency is greater than ever. However, it is only through successful integration that this efficiency is achieved.

<< First < Previous Page 1 Page 2 Page 3 Next > Last >>

Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me